Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Magnetism and superconductivity in topotactically modified transition metal chalcogenides

    Thumbnail
    View/Open
    Wilfong_umd_0117E_20663.pdf (107.9Mb)
    No. of downloads: 148

    Date
    2020
    Author
    Wilfong, Brandon Cody
    Advisor
    Rodriguez, Efrain E
    Paglione, Johnpierre
    DRUM DOI
    https://doi.org/10.13016/pfwm-bobs
    Metadata
    Show full item record
    Abstract
    Inspired by the structure of the simplest iron-based chalcogenide superconductor, FeSe, the class of tetrahedral transition metal chalcogenides (TTMCs) exhibit interesting chemical and physical properties due to its structure. This structure consists of tetrahedrally coordinated transition metal chalcogenides stacked to form two dimensional layers held together by van der Waals forces. This structure and its associated tetrahedral coordination of transition metal to chalcogenide, square transition metal sublattice, van der Waals layered structure, and d-electron filling at the Fermi level yields interesting properties from superconductivity to frustrated itinerant magnetism. In this dissertation work, we demonstrate that the anti-PbO type FeCh (Ch = S, Se, Te) structure offers a perfect platform for the study of superconductivity in the iron-based system as well as new physics as the class is expanded to different transition metals. Prior to this work, the binaries of the TTMC family was limited to iron, but has been expanded to cobalt. In the cobalt compound, CoSe, superconductivity in the FeSe binary is suppressed and a frustrated spin glass like magnetic state emerges. Beyond the binaries, we have shown that topotactic hydrothermal synthetic routes on the iron chalcogenide system can lead to novel intercalated phases where long range magnetic order can co-exist with superconductivity in the (LiOH)FeSe system. This synthetic scheme also allows the intercalation of organic molecules, specifically ethylenediamine, to form organic-inorganic hybrids which can offer a new avenue for designing heterolayer compounds with complex interlayer interactions and bonding.
    URI
    http://hdl.handle.net/1903/26018
    Collections
    • Chemistry & Biochemistry Theses and Dissertations
    • Physics Theses and Dissertations
    • UMD Theses and Dissertations

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility