Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    DETERMINATION OF SULFUR ISOTOPE COMPOSITION IN SULFATE FROM TWO HIGH ELEVATION SNOWPITS BY MULTI-COLLECTOR THERMAL IONIZATION MASS SPECTROMETRY USING A DOUBLE SPIKE

    Thumbnail
    View/Open
    umi-umd-2484.pdf (1.349Mb)
    No. of downloads: 5143

    Date
    2005-05-12
    Author
    Mann, Jacqueline Lorraine
    Advisor
    Prestegaard, Karen L.
    Metadata
    Show full item record
    Abstract
    The variability of stable sulfur isotopes in nature provides a chemical tool for tracing the various sources of sulfur and a useful tool for understanding the sulfur cycle. It is also well established that snow and ice preserve a record of the sources, sinks, and processing of sulfur that reflect changes in this cycle through time. Our ability to sample this record is however limited by the total sample concentration and the analytical requirements for isotopic analysis. A high-resolution double spike technique using multi-collector thermal ionization mass spectrometry was developed for stable sulfur isotope composition measurements of small concentration sulfate samples (ppb level). The capability of this new technique was demonstrated by measuring internationally recognized standards of known isotopic composition and by measuring snowpit samples with low sulfate concentrations collected from the Inilchek Glacier, Kyrgyzstan and Summit, Greenland. The elemental and high resolution sulfur isotope data for the snowpit samples were used to calculate the relative seasonal contributions of anthropogenic and natural sulfur sources to sulfate at these high-elevation Northern Hemisphere sites. The isotope composition results for the standards demonstrate the double spike technique to be competitive in accuracy and precision with the traditional methods but the sample requirement is smaller. The average uncertainties on the individual isotope composition measurements for the Inilchek and Summit samples were approximately ± 0.10 (2s) and ± 1.5 (2s), respectively. The larger uncertainties for the Greenland samples resulted from increased blank and the smaller sample size used for analysis. Decreasing the blank concentrations by an order of magnitude show that a factor of two to three improvement in the uncertainties on small sample sizes is attainable with the double spike technique. The sulfur isotope values in the Inilchek snowpit demonstrate no seasonality; while the values observed in the Greenland snowpit exhibit strong seasonality, where the values are 34S-depleted in the winter months and are 34S-enriched in the summer months. Mass balance calculations indicate that anthropogenic sources are the main contributor (75%) to sulfate during most of the year for both locations.
    URI
    http://hdl.handle.net/1903/2591
    Collections
    • Geology Theses and Dissertations
    • UMD Theses and Dissertations

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility