Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    POLYMER ASSISTED ASSEMBLY OF INORGANIC MATERIALS FOR NEXT GENERATION BATTERIES

    View/Open
    Carter_umd_0117E_20469.pdf (2.473Mb)
    (RESTRICTED ACCESS)
    No. of downloads: 0

    Date
    2019
    Author
    Carter, Marcus
    Advisor
    Rodriguez, Efrain
    DRUM DOI
    https://doi.org/10.13016/zlpq-qige
    Metadata
    Show full item record
    Abstract
    Nanoscale materials have desirable electronic features (e.g. high surface areas, reduced mass and transport paths) that can be harnessed for a variety of technological applications. In most storage devices, there is a particular interest in nanostructured electrodes and solid-state electrolytes. A key challenge is the reproducible fabrication of these nanostructured materials. Polymers are nanoscale materials that could be used for nanoscale fabrication with improved reproducibility. In this thesis I explored two nanostructured systems using novel polymer assisted assembly methods. I fabricate a nano-structured MoS2 electrode and a nano-structured Li7La3Zr2O12 solid-state electrolyte with a garnet-type structure. A clear redox mechanism for MoS2 is currently being sought. Using our electrode, we propose a mechanism to understand the total or partial decomposition of the electrode and the formation of long soluble polysulfides. We complete a fundamental study to determine the peaks on a cyclic voltammetry curve of nanostructured MoS2. We resolve these peaks by building a novel but simple system of restacked MoS2 with a conformal polyaniline (PANI) coating. We propose that the novel coating functions by absorbing, capturing, and promoting charge transfer (oxidization and reduction) of sulfur atoms remaining at the surface. Our data suggests that PANI acts as redox mediator. Redox mediators can be molecules or solid surfaces that aid in the charge transfer to redox species, traditionally oxide species. Our findings suggest that sulfur behavior dominates the redox chemistry at 0.7 V even earlier than the proposed deep discharge. We propose that longer chain polysulfides are formed through surface mediated interactions with persistent lattice planes of MoS2. Solid-state electrolytes like cubic garnet type Li7La3Zr2O12 offer safety advantages over flammable liquid electrolytes, which is especially significant to the advancement of high energy density battery devices. Garnet however is unstable in air, suffers from low preparation efficiency and degradation into a two competitive phases, tetragonal type garnet and lithium carbonate phases, which have low conductivity. For two polymers systems, poly(styrene)-block-poly(acrylic acid), PS(0.3)-b-PAA(0.7) and PS(0.8)-b-PAA(0.2), we synthesize cubic Li7La3Zr2O12 garnet. We systematically investigate the effect of growth parameters, temperature and excess lithium content, to find the optimized synthesis conditions of 750 °C for ~5 h with 60 wt.% and 65 wt.% excess lithium salt, for the polymer systems.
    URI
    http://hdl.handle.net/1903/25468
    Collections
    • Chemistry & Biochemistry Theses and Dissertations
    • UMD Theses and Dissertations

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility