Characterizing tree species diversity in the tropics using full-waveform lidar data

Loading...
Thumbnail Image

Publication or External Link

Date

2019

Citation

Abstract

Tree species diversity is of paramount value to maintain forest health and to ensure that forests are able to provide all vital functions, such as creating oxygen, that are needed for mankind to survive. Most of the world’s tree species grow in the tropical region, but many of them are threatened with extinction due to increasing natural and human-induced pressures on the environment. Mapping tree species diversity in the tropics is of high importance to enable effective conservation management of these highly diverse forests. This dissertation explores a new approach to mapping tree species diversity by using information on the vertical canopy structure derived from full-waveform lidar data. This approach is of particular interest in light of the recently launched Global Ecosystem Dynamics Investigation (GEDI), a full-waveform spaceborne lidar. First, successful derivation of vertical canopy structure metrics is ensured by comparing canopy profiles from airborne lidar data to those from terrestrial lidar. Then, the airborne canopy profiles were used to map five successional vegetation types in Lopé National Park in Gabon, Africa. Second, the relationship between vertical canopy structure and tree species richness was evaluated across four study sites in Gabon, which enabled mapping of tree species richness using canopy structure information from full-waveform lidar. Third, the relationship between canopy structure and tree species richness across the tropics was established using field and lidar data collected in 16 study sites across the tropics. Finally, it was evaluated how the methods and applications developed here could be adapted and used for mapping pan-tropical tree species diversity using future GEDI lidar data products.

Notes

Rights