Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A STRATEGY FOR CALIBRATING THE HSPF MODEL

    Thumbnail
    View/Open
    umi-umd-2374.pdf (1.381Mb)
    No. of downloads: 1769

    Date
    2005-04-29
    Author
    Gutierrez-Magness, Angelica Lucia
    Advisor
    McCuen, Richard H
    Metadata
    Show full item record
    Abstract
    The development of Total Maximum Daily Loads (TMDLs) and environmental policies rely on the application of mathematical models, both empiric and deterministic. The Hydrologic Simulation Program-FORTRAN (HSPF) is the most comprehensive model, and it is frequently applied in the development of TMDLs for nonpoint sources control. Despite the wide use of HSPF, a documented strategy for its calibration is not available. Furthermore, the most common calibration approach uses subjective fitting and focuses on the attainment of statistical goodness of fit, ignoring in many cases the rationality of the model. The goal of this research was to develop a strategy for calibrating the HSPF model in combination with the model-independent-parameter estimator (PEST). PEST is an objective parameter estimator that should eliminate some of the subjectivity from the calibration process and reduce the repetitive effort associated with subjective fitting. The strategy was established through a series of analyses, which included the development of a weighted multi-component objective function used as the criterion for calibration. The weights are a function of the flow components of the measured runoff. The use of this new weighting procedure improves model and prediction accuracy. Methods of rainfall disaggregation and their effect on the prediction accuracy were studied. The results indicated that methods based on analyses of actual storm frequency data provided the most accurate daily-disaggregated values and thus, the best conditions to achieve accurate predictions with the HSPF. Analyses showed that the HSPF model requires a start-up period of about a year to allow the predicted discharges to become insensitive to erroneous estimates of the initial storages. The predictions during the start-up period should not be used for either calibration or the analysis of the goodness of fit. Analyses also showed that using HSPF as a lumped model can reduce the prediction accuracy of discharges from a watershed with an inhomogeneous land use distribution. The fulfillment of the research objectives provides a systematic procedure that improves the hydrologic calibration of the HSPF model.
    URI
    http://hdl.handle.net/1903/2497
    Collections
    • Civil & Environmental Engineering Theses and Dissertations
    • UMD Theses and Dissertations

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility