Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    VARIATIONAL DATA ASSIMILATION OF SOIL MOISTURE INFORMATION

    Thumbnail
    View/Open
    umi-umd-2348.pdf (6.263Mb)
    No. of downloads: 474

    Date
    2005-04-20
    Author
    Grunmann, Pablo Javier
    Advisor
    Kalnay, Eugenia E
    Mitchell, Kenneth E
    Metadata
    Show full item record
    Abstract
    This research examines the feasibility of using observations of land surface temperatures (in principle available from satellite observations) to initialize soil moisture (which is not available on a continental scale). This problem is important because it is known that wrong soil moisture initial conditions can negatively affect the skill of numerical weather prediction models. Since this problem requires the availability of a good soil model, considerable effort was devoted to the improvement of several aspects of the NCEP Noah land surface model and its numerical properties (reliability, efficiency, updates and differentiability). When tested against the experimental station data at Champaign, IL collected by Dr. Tilden Meyers of NOAA/ARL, where the surface fluxes, precipitation, and surface temperature were available, the Noah model forced with observed downward radiative surface fluxes and near-surface meteorology, including precipitation, was able to reproduce the observations quite well. A method for data assimilation was developed and tested, in a manner similar to 4-dimensional variational assimilation (4D-Var) in the sense of applying the temporal behavior of the observed variable but with a single spatial dimension (land surface models are typically “column models”, as they do not usually compute horizontal derivatives). The results show that it is indeed possible to assimilate land surface temperature and use it to correct soil moisture initial conditions, which may manifest significant errors if, for example, the precipitation forcing the model is significantly biased. This is true, however, only if the surface forcings besides precipitation are essentially correct. When surface forcing come from the North American Land Data Assimilation System (NLDAS) as they would be available for operational use over the US, the results are not satisfactory. This is because the assimilation changes the soil moisture to correct for problems in the simulated land surface temperature that are at least partially due to other sources of errors, such as the surface radiative fluxes. We suggest that in order to succeed in the soil moisture initialization, more (and more accurate) observations are needed in order to constrain the dependence of the observation part of the cost function solely on soil moisture.
    URI
    http://hdl.handle.net/1903/2476
    Collections
    • Atmospheric & Oceanic Science Theses and Dissertations
    • UMD Theses and Dissertations

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility