Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    SYNCHRONIZATION IN NETWORKS OF COUPLED OSCILLATORS

    Thumbnail
    View/Open
    umi-umd-2290.pdf (1.105Mb)
    No. of downloads: 1223

    Date
    2005-04-18
    Author
    Restrepo, Juan Gabriel
    Advisor
    OTT, EDWARD
    Metadata
    Show full item record
    Abstract
    We study different aspects of synchronization in networks of coupled oscillators: We adapt a previous model and analysis method (the master stability function), extensively used for studying the stability of the synchronous state of networks of identical chaotic oscillators, to the case of oscillators that are similar but not exactly identical. We find that bubbling induced desynchronization bursts occur for some parameter values. These bursts have spatial patterns, which can be predicted from the network connectivity matrix and the unstable periodic orbits embedded in the attractor. We test the analysis of bursts by comparison with numerical experiments. In the case that no bursting occurs, we discuss the deviations from the exactly synchronous state caused by the mismatch between oscillators. We present a method to determine the relative parameter mismatch in a collection of nearly identical chaotic oscillators by measuring large deviations from the synchronized state. We demonstrate our method with an ensemble of slightly different circle maps. We discuss how to apply our method when there is noise, and show an example where the noise intensity is comparable to the mismatch. We consider a ring of identical or near identical coupled periodic oscillators in which the connections have randomly heterogeneous strength. We use the master stability function method to determine the possible patterns at the desynchronization transition that occurs as the coupling strengths are increased. We demonstrate Anderson localization of the modes of instability, and show that such localized instability generates waves of desynchronization that spread to the whole array. Similar results should apply to other networks with regular topology and heterogeneous connection strengths. We study the transition from incoherence to coherence in large networks of coupled phase oscillators. We present various approximations that describe the behavior of an appropriately defined order parameter past the transition, and generalize recent results for the critical coupling strength. We find that, under appropriate conditions, the coupling strength at which the transition occurs is determined by the largest eigenvalue of the adjacency matrix. We show how, with an additional assumption, a mean field approximation recently proposed is recovered from our results. We test our theory with numerical simulations, and find that it describes the transition when our assumptions are satisfied. We find that our theory describes the transition well in situations in which the mean field approximation fails. We study the finite size effects caused by nodes with small degree and find that they cause the critical coupling strength to increase.
    URI
    http://hdl.handle.net/1903/2425
    Collections
    • Computer Science Theses and Dissertations
    • Mathematics Theses and Dissertations
    • UMD Theses and Dissertations

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility