Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Borcherds Forms and Generalizations of Singular Moduli

    Thumbnail
    View/Open
    umi-umd-2282.pdf (576.5Kb)
    No. of downloads: 1166

    Date
    2005-04-18
    Author
    Schofer, Jarad
    Advisor
    Kudla, Stephen S
    Metadata
    Show full item record
    Abstract
    In the first part of this thesis, we prove an explicit formula for the average of a Borcherds form over CM points associated to a quadratic form of signature (n, 2). One step in the proof extends a theorem of Kudla to the case n = 0. The formula we obtain involves the negative Fourier coefficients of a modular form F, and the second terms in the Laurent expansions (at s = 0) of the Fourier coefficients of an Eisenstein series of weight one. These Laurent expansion terms were calculated by Kudla, Rapoport and Yang in a special case. We extend their results to a more general case. In the second part of this thesis, we consider examples of our main theorem for n = 0 and n = 1 in more detail. When n = 0, we let k be an imaginary quadratic field and we obtain a function on the product of the ideal class group of k with the squares of the ideal class group of k. The example for n = 1 allows us to reproduce the well-known singular moduli result of Gross and Zagier. This result gives an explicit factorization of the function J(D, d), defined as a product of j(z)-j(w) over points z and w of discriminant D and d, respectively, where D and d are negative relatively prime fundamental discriminants.
    URI
    http://hdl.handle.net/1903/2417
    Collections
    • Mathematics Theses and Dissertations
    • UMD Theses and Dissertations

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility