Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    The Normal-Superconducting Phase Transition of YBCO in Zero Magnetic Field

    Thumbnail
    View/Open
    umi-umd-1325.pdf (1.948Mb)
    No. of downloads: 1665

    Date
    2004-03-30
    Author
    Sullivan, Matthew C.
    Advisor
    Lobb, Christopher J
    Metadata
    Show full item record
    Abstract
    We have investigated the superconducting phase transition of YBCO in zero magnetic field. Most of our data were taken on thin films, grown by pulsed laser deposition. To ensure we are looking at intrinsic properties of the phase transition, we have endeavored to optimize our films, which we characterize using ac susceptibility, x-ray diffraction, and surface analysis using SEM and AFM. We examined voltage vs. current measurements at temperatures close to the transition temperature, Tc. Previous work in our group by D. R. Strachan has suggested that the standard scaling analysis fails at low current, contrary to what is widely accepted, and finds evidence for the transition at higher currents. Using data at higher currents, we can unambiguously find Tc and the dynamic critical exponent z, and show z = 2.1 +- 0.15, as expected for the three-dimensional XY model with diffusive dynamics. At lower currents, we find significant finite-size effects, due to the thickness of the films. The crossover to two-dimensional behavior has been seen by other researchers in thinner films (d < 500 A), but were considered irrelevant for thicker films. We show that even in our thickest film (d = 3200 A), the finite-size effects obscure the transition in zero field. This effect would also occur in a magnetic field, and may explain the wide range of critical exponents found in the literature. Finally, we report on work with bulk single crystals. Our measurements of specific heat in crystals disagrees with the critical exponent nu > 1 as is widely reported in the literature. We will also discuss voltage vs. current measurements on crystals.
    URI
    http://hdl.handle.net/1903/226
    Collections
    • Physics Theses and Dissertations
    • UMD Theses and Dissertations

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility