Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    The Search for Supermassive Black Hole Binaries in the Time Domain

    Thumbnail
    View/Open
    Liu_umd_0117E_19445.pdf (47.73Mb)
    No. of downloads: 52

    Date
    2018
    Author
    Liu, Tingting
    Advisor
    Gezari, Suvi
    DRUM DOI
    https://doi.org/10.13016/f4uk-e1d0
    Metadata
    Show full item record
    Abstract
    Supermassive black hole binaries (SMBHBs) are expected due to galaxy mergers and the ubiquity of central supermassive black holes (SMBHs) in galaxies, but direct evidence for close-separation SMBHBs has been elusive. This thesis presents my search for SMBHBs in the optical time domain, {\it i.e.} by searching for their optical variability signatures. It is a novel approach that can potentially yield SMBHBs in close, sub-pc orbits, a population of SMBH pairs or binaries that can not be directly imaged or resolved by current telescopes or techniques. Further, searches in the optical time domain are sensitive to SMBHBs in the low-frequency gravitational wave-emitting regime, opening up the possibility of studying them in the era of multi-messenger astronomy. I developed a custom pipeline to systematically search in the Pan-STARRS1 Medium Deep Survey (PS1 MDS) for periodically varying quasars, which have been predicted as the manifestations of SMBHBs at close separations. I constructed a spectroscopically-complete sample of SMBHB candidates using observations with the Gemini Telescope or the Discovery Channel Telescope and measured their black hole masses and redshifts. I also followed up the candidates with a dedicated monitoring program on the Las Cumbres Observatory telescopes, in order to put their periodicity to the test and identify false positives that are due to the stochastic variability of regular quasars that do not host SMBHBs. I set up the expectations for a true periodic signal by modeling normal quasar variability and showed that evidence for a true signal should strengthen over a longer temporal baseline. I then used the expectations as a guide and applied a range of statistical criteria to select more robust candidates from PS1 MDS. From this down-selected sample, I was able to determine an upper limit on the SMBHB rate. I also discussed the search for SMBHBs in the era of the Large Synoptic Survey Telescope and SMBHB candidates as possible gravitational wave sources for the pulsar timing arrays.
    URI
    http://hdl.handle.net/1903/21614
    Collections
    • Astronomy Theses and Dissertations
    • UMD Theses and Dissertations

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility