Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Designing and Evaluating Next-Generation Thermographic Systems to Support Residential Energy Audits

    Thumbnail
    View/Open
    Mauriello_umd_0117E_19436.pdf (41.79Mb)
    No. of downloads: 54

    Date
    2018
    Author
    Mauriello, Matthew Louis
    Advisor
    Froehlich, Jon E
    DRUM DOI
    https://doi.org/10.13016/ibob-bz9q
    Metadata
    Show full item record
    Abstract
    Buildings account for 41% of primary energy consumption in the United States—more than any other sector—and contribute to an increasing portion of carbon dioxide emissions (33% in 1980 vs. 40% in 2009). To help address this problem, the U.S. Department of Energy recommends conducting energy audits to identify sources of inefficiencies that contribute to rising energy use. One effective technique used during energy audits is thermography. Thermographic-based energy auditing activities involve the use of thermal cameras to identify, diagnose, and document energy efficiency issues in the built environment that are visible as anomalous patterns of electromagnetic radiation. These patterns may indicate locations of air leakages, areas of missing insulation, or moisture issues in the built environment. Sensor improvements and falling costs have increased the popularity of this auditing technique, but its effectiveness is often mediated by the training and experience of the auditor. Moreover, given the increasing availability of commodity thermal cameras and the potential for pervasive thermographic scanning in the built environment, there is a surprising lack of understanding about people’s perceptions of this sensing technology and the challenges encountered by an increasingly diverse population of end-users. Finally, there are few specialized tools and methods to support the auditing activities of end-users. To help address these issues, my work focuses on three areas: (i) formative studies to understand and characterize current building thermography practices, benefits, and challenges, (ii) human-centered explorations into the role of automation and the potential of pervasive thermographic scanning in the built environment, and (iii) evaluations of novel, interactive building thermography systems. This dissertation presents a set of studies that qualitatively characterizes building thermography practitioners, explores prototypes of novel thermographic systems at varying fidelity, and synthesizes findings from several field deployments. This dissertation contributes to the fields of sustainability, computer science, and HCI through: (i) characterizations of the end-users of thermography, (ii) critical feedback on proposed automated thermographic solutions, (iii) the design and evaluation of a novel longitudinal thermography system designed to augment the data collection and analysis activities of end-users, and (iv) design recommendations for future thermographic systems.
    URI
    http://hdl.handle.net/1903/21608
    Collections
    • Computer Science Theses and Dissertations
    • UMD Theses and Dissertations

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility