University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    DEEP SOIL NITROGEN CAPTURE AND RECYCLING BY EARLY-PLANTED, DEEP-ROOTED COVER CROPS

    Thumbnail
    View/Open
    Hirsh_umd_0117E_19262.pdf (4.037Mb)
    No. of downloads: 104

    Date
    2018
    Author
    Hirsh, Sarah Marie
    Advisor
    Weil, Ray R
    DRUM DOI
    https://doi.org/10.13016/M20R9M745
    Metadata
    Show full item record
    Abstract
    The overall purpose of this study was to improve the efficiency of nitrogen (N) cycling in Mid-Atlantic cropping systems through the use of cover crops. Our focus was on describing soil inorganic N pools (0-210 cm deep) and investigating the potential for cover crops to scavenge and recycle deep soil N. Few agronomic studies consider soil properties and processes deeper than the upper 20 to 30 cm, as the majority of roots, amendments, and practices such as fertilizer application or tillage occur on the soil surface or in the topsoil. We 1) assessed amounts of deep soil N on 29 farms in the Mid-Atlantic region, 2) used 15N tracer to investigate the capacity of various cover crops with early- or late-planting dates to capture and recycle deep soil N, and 3) investigated early-planted cover crop systems on 19 farm trials to assess their performance on farms with various soils with diverse management practices. We found that on average 253 kg N ha-1 of inorganic N remained in the soil following summer crops, 55% from 90-210 cm deep. Soil following soybean had the same amount or more of inorganic N than soil following corn throughout the soil profile. Using 15N isotopic tracer, we determined that radish, rye, and radish/rye mixes with and without crimson clover all could capture N from deep soil (60+ cm), but in order for cover crops to capture agronomically meaningful amounts of nitrate-nitrogen (NO3-N) from deep soil, they had to be planted by early-September. Cover crop trials on 19 farms indicated that, while variable site-by-site, early-planted cover crops tended to accumulate substantial N in the fall and reduce residual soil NO3-N levels substantially in the fall and spring. Cover crops also impacted subsequent corn growth and yield, with winter cereal tending to cause lower yields or increased corn N fertilizer needs compared to a no cover crop control, and forage radish sometimes leading to higher yields compared to the control. Overall, cover crops are effective at scavenging deep soil N in the fall, before winter leaching occurs, and under certain conditions, can release N for subsequent crops.
    URI
    http://hdl.handle.net/1903/21318
    Collections
    • Environmental Science & Technology Theses and Dissertations
    • UMD Theses and Dissertations

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility