Towards Generalized Frameworks for Object Recognition

Thumbnail Image
Publication or External Link
Davis, Larry S.
Over the past few years, deep convolutional neural network (DCNN) based approaches have been immensely successful in tackling a diverse range of object recognition problems. Popular DCNN architectures like deep residual networks (ResNets) are highly generic, not just for classification, but also for high level tasks like detection/tracking which rely on classification DCNNs as their backbone. The generality of DCNNs however doesn't extend to image-to-image(Im2Im) regression tasks (eg: super-resolution, denoising, rgb-to-depth, relighting, etc). For such tasks, DCNNs are often highly task-specific and require specific ancillary post-processing methods. The major issue plaguing the design of generic architectures for such tasks is the tradeoff between context/locality given a fixed computation/memory budget. We first present a generic DCNN architecture for Im2Im regression that can be trained end-to-end without any further machinery. Our proposed architecture, the Recursively Branched Deconvolutional Network (RBDN), which features a cheap early multi-context image representation, an efficient recursive branching scheme with extensive parameter sharing and learnable upsampling. We provide qualitative/quantitative results on 3 diverse tasks: relighting, denoising and colorization and show that our proposed RBDN architecture obtains comparable results to the state-of-the-art on each of these tasks when used off-the-shelf without any post processing or task-specific architectural modifications. Second, we focus on gradient flow and optimization in ResNets. In particular, we theoretically analyze why pre-activation(v2) ResNets outperform the original ResNets(v1) on CIFAR datasets but not on ImageNet. Our analysis reveals that although v1-ResNets lack ensembling properties, they can have a higher effective depth in comparison to v2-ResNes. Subsequently, we show that downsampling projections (while only few in number) have a significantly detrimental effect on performance. We show that by simply replacing downsampling-projections with identity-like dense-reshape shortcuts, the classification results of standard residual architectures like ResNets, ResNeXts and SE-Nets improve by up to 1.2% on ImageNet, without any increase in computational complexity (FLOPs). Finally, we present a robust non-parametric probabilistic ensemble method for multi-classification, which outperforms the state-of-the-art ensemble methods on several machine learning and computer vision datasets for object recognition with statistically significant improvements. The approach is particularly geared towards multi-classification problems with very low training data and/or a fairly high proportion of outliers, for which training end-to-end DCNNs is not very beneficial.