University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    FUNCTIONAL PARTICLE GENERATION BY AEROSOL-ASSISTED PROCESSES

    Thumbnail
    View/Open
    Liang_umd_0117E_18798.pdf (10.21Mb)
    No. of downloads: 69

    Date
    2018
    Author
    Liang, Yujia
    Advisor
    Ehrman, Sheryl H
    DRUM DOI
    https://doi.org/10.13016/M2PR7MX52
    Metadata
    Show full item record
    Abstract
    Aerosol-assisted processes are continuous with short residence times, simple operating procedures, and facile equipment requirements. They are scalable and promising for fabrication of functional particles as conductive pastes in solar cell metallization and interference packaging, electrode materials in energy storage devices, and photocatalysts in energy conversion. Although aerosol-assisted processes have long been used in manufacturing and their fundamentals have been intensively explored, further investigation is still required to better understand the particle formation mechanisms of different aerosol-assisted processes. In this dissertation, three different aerosol-assisted processes are investigated, spray pyrolysis, colloidal spray pyrolysis (CSP), and spray drying. These processes can be conducted under mild reaction conditions with simple operation procedures. The product particles are controllable. The effects of process variables on the product particles are studied. Furthermore, the prospects of applying these three aerosol-assisted processes in generating functional particles in applications, including solar cell metallization, battery, and photocatalysis are assessed. Part 1) includes Chapters 3-5. I first present Cu-Sn binary particle generation by spray pyrolysis. Through studying the particle oxidation behaviors under different reaction conditions, the Cu-Sn binary particles exhibit high oxidation-resistance. The one-dimensional and two-dimensional structures fabricated by direct printing inks containing Cu-Sn powders display low resistivity. They all suggest that Cu-Sn binary particles produced by spray pyrolysis are promising materials in the inks in printed electronics and in the conductive pastes in solar cell metallization and interference packaging. In Part 2), Chapters 6, a novel aerosol-assisted process, CSP, is developed. This process addresses one restriction of conventional spray pyrolysis which can only be used to fabricate particles from precursor solutions containing high-solubility salts. By applying CSP, tin@carbon (Sn@C) composite particles are produced with controllable interior structures. These composite particles exhibit high-performance as the anode materials for Li-ion and Na-ion batteries. In Part 3), Chapter 7, spray drying is utilized to fabricate photocatalysts from precursor solutions containing SnO2 colloids and edge-oxidized graphene oxide (eo-GO) sheets. The particle morphology, element distribution, and band structures were investigated by various tools. The photocatalytic activity of the composite particles is five times that of commercialized TiO2 (P25) in reducing CO2 into CH4.
    URI
    http://hdl.handle.net/1903/20829
    Collections
    • Chemical and Biomolecular Engineering Theses and Dissertations
    • UMD Theses and Dissertations

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility