Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Microwave Photos in High Impedance Transmission line: Dispersion, Disorder and Localization

    Thumbnail
    View/Open
    Mehta_umd_0117N_18467.pdf (4.492Mb)
    No. of downloads: 214

    Date
    2017
    Author
    Mehta, Nitish Jitendrakumar
    Advisor
    Murphy, Thomas E
    Manucharyan, Vladimir E
    DRUM DOI
    https://doi.org/10.13016/M2X921K0X
    Metadata
    Show full item record
    Abstract
    In this thesis we will describe the theoretical and experimental studies of a TEM on-chip superconducting transmission line with a wave impedance as high as 20 $\mathrm{k}\Omega$, phase and group velocity of waves simultaneously reduced by a factor of 100 in a broad range of frequencies from 0 to about 10 $\mathrm{GHz}$. A conventional microwave coaxial transmission line gets its inductance and capacitance from magnetic and electric fields stored in the space between its inner and outer conductors. This in turn limits its impedance to around 50 $\Omega$ and group velocity of waves very close to the speed of light in vacuum. In this work we are able to increase the impedance by over two orders of magnitude and reduce the group and phase velocity of waves by over two orders of magnitude as well, by constructing a coplanar transmission line out of a pair of long Al/AlOx/Al Josephson tunnel junction chains. A Josephson junction gets its inductance not from the magnetic energy but rather from the much larger kinetic energy of tunneling Cooper pairs, which is unrelated to the electromagnetic properties of vacuum. In this work we present a design of such a transmission line and low-temperature measurement of its dispersion relation. We then study and characterize the disorder present in the circuit parameters of our system and using this, we conclude that for frequencies up to 12 GHz, there is no evidence of Anderson localization of waves, even for chains exceeding 30,000 junctions. Low dissipation and absence of localization make this transmission line ideal for use in various experiments where high impedance can enable strong coupling between light and matter.
    URI
    http://hdl.handle.net/1903/20048
    Collections
    • Electrical & Computer Engineering Theses and Dissertations
    • UMD Theses and Dissertations

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility