University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    IMPROVING THE ROUND COMPLEXITY OF IDEAL-CIPHER CONSTRUCTIONS

    Thumbnail
    View/Open
    Thiruvengadam_umd_0117E_18402.pdf (1.061Mb)
    No. of downloads: 121

    Date
    2017
    Author
    Thiruvengadam, Aishwarya
    Advisor
    Katz, Jonathan
    DRUM DOI
    https://doi.org/10.13016/M2ZC7RV3J
    Metadata
    Show full item record
    Abstract
    Block ciphers are an essential ingredient of modern cryptography. They are widely used as building blocks in many cryptographic constructions such as encryption schemes, hash functions etc. The security of block ciphers is not currently known to reduce to well-studied, easily formulated, computational problems. Nevertheless, modern block-cipher constructions are far from ad-hoc, and a strong theory for their design has been developed. Two classical paradigms for block cipher design are the Feistel network and the key-alternating cipher (which is encompassed by the popular substitution-permutation network). Both of these paradigms that are iterated structures that involve applications of random-looking functions/permutations over many rounds. An important area of research is to understand the provable security guarantees offered by these classical design paradigms for block cipher constructions. This can be done using a security notion called indifferentiability which formalizes what it means for a block cipher to be ideal. In particular, this notion allows us to assert the structural robustness of a block cipher design. In this thesis, we apply the indifferentiability notion to the two classical paradigms mentioned above and improve upon the previously known round complexity in both cases. Specifically, we make the following two contributions: (1) We show that a 10-round Feistel network behaves as an ideal block cipher when the keyed round functions are built using a random oracle. (2) We show that a 5-round key-alternating cipher (also known as the iterated Even-Mansour construction) with identical round keys behaves as an ideal block cipher when the round permutations are independent, public random permutations.
    URI
    http://hdl.handle.net/1903/20009
    Collections
    • Computer Science Theses and Dissertations
    • UMD Theses and Dissertations

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility