Show simple item record

dc.contributor.advisorWaks, Edoen_US
dc.contributor.authorCai, Taoen_US
dc.date.accessioned2017-09-14T05:44:55Z
dc.date.available2017-09-14T05:44:55Z
dc.date.issued2017en_US
dc.identifierhttps://doi.org/10.13016/M22B8VC3G
dc.identifier.urihttp://hdl.handle.net/1903/19985
dc.description.abstractNon-classical light is highly desired in quantum optics applications including quantum information processing, quantum communication and quantum measurement. This thesis explores two important aspects of non-classical light. First, we demonstrate coherent control of energy transfer between a single photon emitter and nano-cavity, which paves a path towards controlled generation of non-classical light. Second, we present a technique to achieve efficient coupling between single photon emitters and surface plasmon polaritons, which could lead to nanoscale non-classical light sources. Coupling an atom-like single photon emitter to a nano-cavity plays an important role in cavity quantum electrodynamics, which provides a possibility to control the emission of the emitter. In the strong coupling regime where the coupling of the system surpasses its loss, energy transfers coherently between the emitter and the cavity field in the form of vacuum Rabi oscillation. Controlling these oscillations is challenging because it requires a control of the system’s coupling on a fast time scale compared to the vacuum Rabi oscillation. Here we demonstrate coherent control of energy transfer between a single quantum dot and a photonic crystal cavity by manipulating the system’s vacuum Rabi oscillations. Such a technique could ultimately provide a path towards GHz controlled synthesis of non-classical light at optical frequencies on a solid-state platform. Surface plasmon polaritons concentrate light into subwavelength dimensions. Coupling single photon emitters to plasmonic structures not only allows significant interactions between the emitters and light, but also offers a possibility of realizing nanoscale non-classical light sources. Coupling a single photon emitter to surface plasmon polaritons is challenging because it requires a nanometer-scale alignment of the emitter to the plasmonic structure. Here we present a technique to achieve efficient coupling between single photon emitters and surface plasmon polaritons with a high yield of successful devices. We engineer the strains on atomically thin tungsten diselenide (WSe2) and generate single-defect emitters to be self-aligned to the plasmonic mode of a silver nanowire. This technique offers a way to achieve efficient coupling between diverse plasmonic nano-structures and localized defects in 2D materials.en_US
dc.language.isoenen_US
dc.titleControlled interaction between single photon emitters and photonic nano-structuresen_US
dc.typeDissertationen_US
dc.contributor.publisherDigital Repository at the University of Marylanden_US
dc.contributor.publisherUniversity of Maryland (College Park, Md.)en_US
dc.contributor.departmentElectrical Engineeringen_US
dc.subject.pqcontrolledEngineeringen_US
dc.subject.pqcontrolledQuantum physicsen_US
dc.subject.pqcontrolledOpticsen_US
dc.subject.pquncontrolled2D semiconductoren_US
dc.subject.pquncontrollednon-classical lighten_US
dc.subject.pquncontrolledphotochromicen_US
dc.subject.pquncontrolledphotonic crystal cavityen_US
dc.subject.pquncontrolledsingle photon emitteren_US
dc.subject.pquncontrolledsurface plasmon polaritonsen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record