Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    The Role of Adipocyte Lipid Droplet Lipolysis in Thermogenesis and Metabolic Health

    Thumbnail
    View/Open
    Shin_umd_0117E_17857.pdf (3.584Mb)
    No. of downloads: 122

    Date
    2017
    Author
    Shin, Hyunsu
    Advisor
    Yu, Liqing
    DRUM DOI
    https://doi.org/10.13016/M2528X
    Metadata
    Show full item record
    Abstract
    My thesis was focused on the role of Comparative Gene Identification-58 (CGI-58)-mediated adipocyte lipid droplet (LD) lipolysis in thermogenesis and metabolic health. LD lipolysis in energy-dissipating brown adipose tissue (BAT) was believed to play a central role in cold-induced non-shivering thermogenesis, but this concept has not been tested in whole animal in vivo. We created a mouse line that lacks BAT CGI-58, a coactivator of Adipose Triglyceride Lipase (ATGL) that initiates the first step of cytosolic LD lipolysis by cleaving a fatty acyl chain from a triglyceride (TG) molecule. We found that BAT-specific CGI-58 knockout (BAT-KO) mice defend against the cold normally when food is absent, despite a defect in BAT LD lipolysis. Interestingly, BAT-KO versus control mice display higher body temperature when food is present during cold exposure. This cold adaptation in BAT-KO mice is associated with increases in BAT glucose uptake, insulin sensitivity, white adipose tissue (WAT) browning, energy expenditure, and sympathetic innervation. To identify the sources of fuels for thermogenesis of BAT-KO mice in the fasted state, we hypothesized that WAT lipolysis is a major source of thermogenic fuels during fasting. To test this hypothesis, we genetically inactivated CGI-58 expression in the whole fat tissues (both BAT and WAT) of mice (FAT-KO mice). We observed that FAT-KO mice are cold sensitive when food is absent, but tolerate cold normally when food is present, demonstrating that WAT lipolysis is essential for cold-induced thermogenesis during fasting and that dietary nutrients can substitute WAT lipolysis for fueling whole-body thermogenesis. Intriguingly, FAT-KO mice display a dramatic increase in cardiac glucose uptake under both basal and insulin-stimulated conditions, which is associated with significant increases in glucose tolerance, insulin sensitivity, and cardiac expression levels of natriuretic peptides. In conclusion, our studies demonstrate that 1) BAT LD lipolysis is not essential for cold-induced whole-body thermogenesis due to increased BAT uptake of circulating fuels and WAT browning; 2) WAT lipolysis is required for fueling thermogenesis during fasting; and 3) Adipose lipolysis is critically implicated in whole-body energy metabolism and cardiac function.
    URI
    http://hdl.handle.net/1903/19359
    Collections
    • Animal & Avian Sciences Theses and Dissertations
    • UMD Theses and Dissertations

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility