University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Electrical Properties of a Tube-in-a-Tube Semiconductor

    Thumbnail
    View/Open
    Ng_umd_0117E_17778.pdf (10.89Mb)
    No. of downloads: 60

    Date
    2016
    Author
    Ng, Allen Lee
    Advisor
    Wang, YuHuang
    DRUM DOI
    https://doi.org/10.13016/M2G28Q
    Metadata
    Show full item record
    Abstract
    Tube-in-a-tube (Tube^2) nanostructures were synthesized through the outer-wall selective covalent functionalization of double-walled carbon nanotubes (DWCNTs) at high functional densities. Upon functionalization, the properties of individual walls within the structure decouple resulting in an electrically insulating functional outer tube while the inner tube retains exceptional CNT properties. The exceptional electrical properties of Tube^2 semiconductor structures were demonstrated for applications that include molecular and biological sensors and patterning of CNTbased structures with electronic type specificity. Tube^2 thin film transistor (TFT) sensors exhibited simultaneous ultrahigh sensitivity and selectivity towards chemical and biological targets. Carboxylic acid terminated Tube^2 sensors displayed an NH3 sensitivity of 60 nM, which is comparable with small molecule aqueous solution detection using state-of-the-art TFT sensors while simultaneously attaining 6,000 times higher chemical selectivity towards a variety of amine containing analyte molecules over carboxylic acids. Similarly, 23-base ii oligonucleotide terminated Tube^2 sensors demonstrated concomitant sensitivity down to 5 nM towards their complementary sequence without amplification techniques and single mismatch selectivity without the use of a gate electrode. Unique sensor architectures can be designed with the requirement of a gate electrode, such as the creation of millimeter-scale point sensors. The optical features and unique structural features of Tube^2 thin films were also exploited to address the challenge of patterning CNT nanostructures with electronic type specificity. Patterned dot arrays and conductive pathways were created on an initially insulating Tube^2 thin film by tuning the resonance of the direct-writing laser with the electronic type of the inner tube (i.e., metallic or semiconducting). The successful patterning of Tube^2 thin films was unambiguously confirmed with in situ Raman spectral imaging and electrical characterization. Furthermore, a hybrid 2-D carbon nanostructure comprised of a functionalized graphene that covers a semiconducting (6,5) SWCNT network (fG/sSWCNT) was developed. The hybrid fG/sSWCNT nanostructure exhibits similar structural and electrical properties as a semiconducting Tube^2 thin film, but possesses a transconductance that is an order of magnitude larger than Tube^2 and ON/OFF ratios as high as 5400 without the useful of further processing steps such as electrical breakdown.
    URI
    http://hdl.handle.net/1903/19287
    Collections
    • Chemistry & Biochemistry Theses and Dissertations
    • UMD Theses and Dissertations

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility