Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    EXPRESSING PREFERENCES WITH PRICE-VECTOR AGENTS IN COMBINATORIAL AUCTIONS

    Thumbnail
    View/Open
    umi-umd-1842.pdf (957.6Kb)
    No. of downloads: 1508

    Date
    2004-08-12
    Author
    Day, Robert Warren
    Advisor
    Raghavan, Subramanian
    Metadata
    Show full item record
    Abstract
    In this work, we investigate two combinatorial auction formats in which each bidding bidder may be represented by a collection of unit-demand or price-vector agents. In the first model, bidder preferences are aggregated in a Bid Table, through which a bidder in a combinatorial auction may express several forms of subadditive preferences. We show that the gross substitutes property holds for this model, and design a large-scale combinatorial auction using bid tables as a demand revelation stage, determining linear price signals for later stages. The constraints of this model coincide naturally with the restrictions of recently proposed FAA landing-slot auctions, and we provide a slot auction design based on this model. In a second model, we explore the more complex behavior possible when each bidder's collection of price-vector agents coordinate based on a bidder-specified ordering of the auction items. With this coordination each bidder is able to convey a rich set of preferences, including the ability to express both superadditive and subadditive bundle synergies (i.e., substitutes and complements). The instructions for this collection of agents are tabulated in a lower-triangular Matrix Bid, and we compare the use of matrix bids to other compact techniques for writing down a wide variety of bidding information. We show that the winner determination problem for this Matrix Bid Auction is NP-hard, provide results from a series of computational experiments, and develop IP techniques for improving run time. In addition to the results on price-vector agents, bid tables, and matrix bidding, we present a new technique for achieving bidder-Pareto-optimal core outcomes in a sealed-bid combinatorial auction. The key idea of this iterative procedure is the formulation of the separation problem for core constraints at an arbitrary point in winner payment space.
    URI
    http://hdl.handle.net/1903/1849
    Collections
    • Computer Science Theses and Dissertations
    • Mathematics Theses and Dissertations
    • UMD Theses and Dissertations

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility