Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • Gemstone Team Research
    • Gemstone Team Research
    • View Item
    •   DRUM
    • Gemstone Team Research
    • Gemstone Team Research
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A Stationless Bikeshare Proof of Concept for College Campuses

    Thumbnail
    View/Open
    BIKES_Final Thesis.pdf (24.52Mb)
    No. of downloads: 2232

    Date
    2016-05
    Author
    Boegner, Luke
    Cho, Yong
    Fleming, Nicholas
    Gilman, Tyler
    Huang, Teng Kuan
    King, Kyle
    Kruder, Nathaniel
    Lafond, Joshua
    McLaughlin, Timothy
    Noh, Sye Hoon
    Poh, William
    Ruppel, Emily
    Wei, Libby
    Advisor
    Newcomb, Robert
    DRUM DOI
    https://doi.org/10.13016/M23V06
    Metadata
    Show full item record
    Abstract
    Bikeshares promote healthy lifestyles and sustainability among commuters, casual riders, and tourists. However, the central pillar of modern systems, the bike station, cannot be easily integrated into a compact college campus. Fixed stations lack the flexibility to meet the needs of college students who make quick, short-distance trips. Additionally, the necessary cost of implementing and maintaining each station prohibits increasing the number of stations for user convenience. Therefore, the team developed a stationless bikeshare based on a smartlock permanently attached to bicycles in the system. The smartlock system design incorporates several innovative approaches to provide usability, security, and reliability that overcome the limitations of a station centered design. A focus group discussion allowed the team to receive feedback on the early lock, system, and website designs, identify improvements and craft a pleasant user experience. The team designed a unique, two-step lock system that is intuitive to operate while mitigating user error. To ensure security, user access is limited through near field ii communications (NFC) technology connected to a mechatronic release system. The said system relied on a NFC module and a servo working through an Arduino microcontroller coded in the Arduino IDE. To track rentals and maintain the system, each bike is fitted with an XBee module to communicate with a scalable ZigBee mesh network. The network allows for bidirectional, real-time communication with a Meteor.js web application, which enables user and administrator functions through an intuitive user interface available on mobile and desktop. The development of an independent smartlock to replace bike stations is essential to meet the needs of the modern college student. With the goal of creating a bikeshare that better serves college students, Team BIKES has laid the framework for a system that is affordable, easily adaptable, and implementable on any university expressing an interest in bringing a bikeshare to its campus.
    URI
    http://hdl.handle.net/1903/18094
    Collections
    • Gemstone Team Research

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility