Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A Simplified Model for Interconnect Stresses Induced by Bending of Printed Wiring Boards

    Thumbnail
    View/Open
    Mifsud_umd_0117N_16828.pdf (1.326Mb)
    No. of downloads: 185

    Date
    2015
    Author
    Mifsud, Mark
    Advisor
    Dasgupta, Abhijit
    DRUM DOI
    https://doi.org/10.13016/M2WQ67
    Metadata
    Show full item record
    Abstract
    A simplified model is developed for analysis of interconnect stresses induced by changes in the curvature of printed wiring boards. The model utilizes the Rayleigh-Ritz variational approach and can be used for rapid assessment and is well-suited for parametric studies because it does not need any numerical meshing. This simplified model represents the component as an equivalent shell and the interconnects as deformable beams. As a simplification, any initial warpage of the component has been neglected in this study. Finite element models are used to verify the simplified model: a simplified FEA model that utilizes the same shell idealization as the proposed Rayleigh-Ritz model and a more detailed 3D solid model. The proposed simplified model provides a faster, more versatile alternative to FEA and can be used to estimate the interconnect stresses caused by PWB warpage under a variety of thermomechanical, vibration, and shock/drop loading conditions. This thesis focuses on demonstrating the use of this simplified modeling approach for area array surface mount components (e.g. stud-grid array, land-grid array, column grid array, and ball grid array). In particular, the example problem addressed in this thesis is the pre-stress induced in surface mount area-array interconnects during the solder reflow process used for attaching surface mount packages to printed wiring boards (PWBs). The possibility exists for the PWB and component to warp during the reflow process and therefore exhibit some concave or convex curvature once the process has been completed. If the PWB is then straightened during the assembly process, the act of straightening the PWB can cause pre-stresses to develop in the interconnects between the PWB and the component package. It is important to understand these pre-stresses because unaccounted for interconnect pre-stresses can result in premature wear-out failures or unexpected overstress failures of the assembly.
    URI
    http://hdl.handle.net/1903/17401
    Collections
    • Mechanical Engineering Theses and Dissertations
    • UMD Theses and Dissertations

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility