Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    ASSESSING FOREST BIOMASS AND MONITORING CHANGES FROM DISTURBANCE AND RECOVERY WITH LIDAR AND SAR

    Thumbnail
    View/Open
    Huang_umd_0117E_16532.pdf (7.779Mb)
    No. of downloads: 1060

    Date
    2015
    Author
    Huang, Wenli
    Advisor
    Dubayah, Ralph
    Sun, Guoqing
    DRUM DOI
    https://doi.org/10.13016/M2GS9B
    Metadata
    Show full item record
    Abstract
    This dissertation research investigated LiDAR and SAR remote sensing for assessing aboveground biomass and monitoring changes from anthropogenic forest disturbance and post-disturbance recovery. First, waveform LiDAR data were applied to map forest biomass and its changes at different key map scales for the two study sites: Howland Forest and Penobscot Experimental Forest. Results indicated that the prediction model at the scale of individual LVIS footprints is reliable when the geolocation errors are minimized. The evaluation showed that the predictions were improved markedly (20% R2 and 10% RMSE) with the increase of plot sizes from 0.25 ha to 1.0 ha. The effect of disturbance on the prediction model was strong at the footprint level but weak at the 1.0 ha plot-level. Errors reached minimum when footprint coverage approached about 50% of the area of 1.0 ha plots (16 footprints) with no improvement beyond that. Then, a sensitivity analysis was conducted for multi-source L-band SAR signatures, to change in forest biomass and related factors such as incidence angle, soil moisture, and disturbance type. The effect of incidence angle on SAR backscatter was reduced by an empirical model. A cross-image normalization was used to reduce the radiometric distortions due to changes in acquisition conditions such as soil moisture. Results demonstrated that the normalization ensured that the derived biomass of regrowth forests was cross-calibrated, and thus made the detection of biomass change possible. Further, the forest biomass was mapped for 1989, 1994 and 2009 using multi-source SAR data, and changes in biomass were derived for a 15- and a 20-year period. Results improved our understanding of issues concerning the mapping of biomass dynamic using L-ban SAR data. With the increase of plot sizes, the speckle noise and geolocations errors were reduced. Multivariable models were found to outperform the single-term models developed for biomass estimation. The main contribution of this research was an improved knowledge concerning waveform LiDAR and L-band SAR’s ability in monitoring the changes in biomass in a temperate forest. Results from this study provide calibration and validation methods as a foundation for improving the performance of current and future spaceborne systems.
    URI
    http://hdl.handle.net/1903/17148
    Collections
    • Geography Theses and Dissertations
    • UMD Theses and Dissertations

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility