Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Identification of Operators on Elementary Locally Compact Abelian Groups

    Thumbnail
    View/Open
    Civan_umd_0117E_16526.pdf (617.3Kb)
    No. of downloads: 176

    Date
    2015
    Author
    Civan, Gokhan
    Advisor
    Benedetto, John J
    DRUM DOI
    https://doi.org/10.13016/M2CH20
    Metadata
    Show full item record
    Abstract
    Measurement of time-variant linear channels is an important problem in communications theory with applications in mobile communications and radar detection. Kailath addressed this problem about half a century ago and developed a spreading criterion for the identifiability of time-variant channels analogous to the band limitation criterion in the classical sampling theory of signals. Roughly speaking, underspread channels are identifiable and overspread channels are not identifiable, where the critical spreading area equals one. Kailath's analysis was later generalized by Bello from rectangular to arbitrary spreading supports. Modern developments in time-frequency analysis provide a natural and powerful framework in which to study the channel measurement problem from a rigorous mathematical standpoint. Pfander and Walnut, building on earlier work by Kozek and Pfander, have developed a sophisticated theory of "operator sampling" or "operator identification" which not only places the work of Kailath and Bello on rigorous footing, but also takes the subject in new directions, revealing connections with other important problems in time-frequency analysis. We expand upon the existing work on operator identification, which is restricted to the real line, and investigate the subject on elementary locally compact abelian groups, which are groups built from the real line, the circle, the integers, and finite abelian groups. Our approach is to axiomatize, as it were, the main ideas which have been developed over the real line, working with lattice subgroups. We are thus able to prove the various identifiability results for operators involving both underspread and overspread conditions in both general and specific cases. For example, we provide a finite dimensional example illustrating a necessary and sufficient condition for identifiability of operators, owing to the insight gleaned from the general theory. In working up to our main results, we set up the quite considerable technical background, bringing some new perspectives to existing ideas and generally filling what we consider to be gaps in the literature.
    URI
    http://hdl.handle.net/1903/17076
    Collections
    • Mathematics Theses and Dissertations
    • UMD Theses and Dissertations

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility