Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    MEASURING INTERACTIONS OF DNA WITH CATIONIC CARRIERS AT THE SINGLE MOLECULE LEVEL: A STEP TOWARD A RATIONAL DESIGN OF CATIONIC CARRIERS TO REACH MAXIMUM TRANSFECTION EFFICIENCY

    Thumbnail
    View/Open
    Lee_umd_0117E_16347.pdf (3.200Mb)
    No. of downloads: 278

    Date
    2015
    Author
    Lee, Amy
    Advisor
    Seog, Joonil
    DRUM DOI
    https://doi.org/10.13016/M2RH11
    Metadata
    Show full item record
    Abstract
    Gene delivery has seen limited clinical success due to poor transfection efficiency or risk of carrier toxicity. Little understanding exists about the dynamic mechanical properties of DNA:carrier complexes, which we hypothesize are critical for protection and release of DNA. Using optical tweezers, we investigated the DNA condensation behaviors of 19-mer poly-L-lysine (PLL), a histidine-lysine peptide, 25 kDa branched polyethylenimine (PEI), G2-triethylenetetramine conjugated gold nanoparticles (G2-TETA), and two triblock copolymers to identify the optimal force signature for efficient transfection. Force-extension profiles indicate that PLL and HK peptides condense DNA, showing force plateaus. When free peptide is removed, the force plateau of HK complexes decreased, but hysteresis persisted, indicating that some HK remains bound. Upon changing the pH from 7.4 to 5, HK complexes recovered plateau forces, due to protonation of bound HK. This charge-regulated mechanical behavior is enhanced when the DNA:HK complex is exposed to Zn2+, resulting in the formation of a mechanically stiff complex. DNA:PEI complexes showed transient force plateaus with a maximum of 35 pN. Shortening of contour length was observed for condensation with 5 nM PEI. 1 M NaCl destabilized DNA:PEI complexes suggesting electrostatic interactions as the major force driving complexation. When 50 nM G2-TETA binds DNA, ~10 pN force plateaus appeared, disappeared, and contour length decreased despite pulling forces up to 50 pN. Neither 1 M NaCl nor 5 mg/mL heparin disrupted the complex. Contour length increased in 5% sodium dodecyl sulfate solution indicating that hydrophobic interactions play a major role in forming mechanically rigid condensates. Both guanidinylated and base copolymers show maximal plateau behavior followed by reduction in contour length. Recovery of the extension for the DNA:base copolymer complex is achieved by a combination of glutathione and either high salt or heparin. Conversely, high salt or heparin conditions alone are sufficient for destabilization of DNA:guanidinylated copolymer. Thus, guanidinylation of the copolymer enhanced sensitivity to ionic environments. Condensed DNA force profiles using different agents were unique regarding their condensation behaviors and responses to environmental changes. Regulation of these interaction forces between DNA and carriers during complex preparation and under physiological conditions will improve transfection efficiencies in vivo.
    URI
    http://hdl.handle.net/1903/16926
    Collections
    • Fischell Department of Bioengineering Theses and Dissertations
    • UMD Theses and Dissertations

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility