Show simple item record

Finite Frames and Graph Theoretic Uncertainty Principles

dc.contributor.advisorBenedetto, John Jen_US
dc.contributor.authorKoprowski, Paul J.en_US
dc.date.accessioned2015-06-26T05:44:20Z
dc.date.available2015-06-26T05:44:20Z
dc.date.issued2015en_US
dc.identifierhttps://doi.org/10.13016/M2ZP7W
dc.identifier.urihttp://hdl.handle.net/1903/16666
dc.description.abstractThe subject of analytical uncertainty principles is an important field within harmonic analysis, quantum physics, and electrical engineering. We explore uncertainty principles in the context of the graph Fourier transform, and we prove additive results analogous to the multiplicative version of the classical uncertainty principle. We establish additive uncertainty principles for finite Parseval frames. Lastly, we examine the feasibility region of simultaneous values of the norms of a graph differential operator acting on a function $f\in l^2(G)$ and its graph Fourier transform.en_US
dc.language.isoenen_US
dc.titleFinite Frames and Graph Theoretic Uncertainty Principlesen_US
dc.typeDissertationen_US
dc.contributor.publisherDigital Repository at the University of Marylanden_US
dc.contributor.publisherUniversity of Maryland (College Park, Md.)en_US
dc.contributor.departmentMathematicsen_US
dc.subject.pqcontrolledMathematicsen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record