The Relative Lie Algebra Cohomology of the Weil Representation

Thumbnail Image
Files
Publication or External Link
Date
2015
Authors
Ralston, Jacob
Advisor
Millson, John
Citation
Abstract
We study the relative Lie algebra cohomology of $\mathfrak{so}(p,q)$ with values in the Weil representation $\varpi$ of the dual pair $\mathrm{Sp}(2k, \R) \times \OO(p,q)$. Using the Fock model defined in Chapter \ref{Introchapter}, we filter this complex and construct the associated spectral sequence. We then prove that the resulting spectral sequence converges to the relative Lie algebra cohomology and has $E_0$ term, the associated graded complex, isomorphic to a Koszul complex, see Section \ref{defofkoszulsection}. It is immediate that the construction of the spectral sequence of Chapter \ref{spectralchapter} can be applied to any reductive subalgebra $\mathfrak{g} \subset \mathfrak{sp}(2k(p+q), \R)$. By the Weil representation of $\OO(p,q)$, we mean the twist of the Weil representation of the two-fold cover $\widetilde{\OO(p,q)}$ by a suitable character. We do this to make the center of $\widetilde{\OO(p,q)}$ act trivially. Otherwise, all relative Lie algebra cohomology groups would vanish, see Proposition \ref{genuineprop}. In case the symplectic group is large relative to the orthogonal group ($k \geq pq$), the $E_0$ term is isomorphic to a Koszul complex defined by a regular sequence, see \ref{defofkoszulsection}. Thus, the cohomology vanishes except in top degree. This result is obtained without calculating the space of cochains and hence without using any representation theory. On the other hand, in case $k < p$, we know the Koszul complex is not that of a regular sequence from the existence of the class $\varphi_{kq}$ of Kudla and Millson, see \cite{KM2}, a nonzero element of the relative Lie algebra cohomology of degree $kq$. For the case of $\SO_0(p,1)$ we compute the cohomology groups in these remaining cases, namely $k < p$. We do this by first computing a basis for the relative Lie algebra cochains and then splitting the complex into a sum of two complexes, each of whose $E_0$ term is then isomorphic to a Koszul complex defined by a regular sequence. This thesis is adapted from the paper, \cite{BMR}, this author wrote with his advisor John Millson and Nicolas Bergeron of the University of Paris.
Notes
Rights