Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Twist-bulge derivatives and deformations of convex real projective structures on surfaces

    Thumbnail
    View/Open
    Long_umd_0117E_16128.pdf (331.1Kb)
    No. of downloads: 442

    Date
    2015
    Author
    Long, Terence Dyer
    Advisor
    Wolpert, Scott A
    DRUM DOI
    https://doi.org/10.13016/M2T32W
    Metadata
    Show full item record
    Abstract
    Let $S$ be a closed orientable surface with genus $g>1$ equipped with a convex $\mathbb{RP}^2$ structure. A basic example of such a convex $\mathbb{RP}^2$ structure on a surface $S$ is the one associated to a hyperbolic structure on $S$, and in this special case Wolpert proved formulas for computing the Lie derivatives $t_{\alpha}l_{\beta}$ and $t_{\gamma}t_{\alpha}l_{\beta}$, where $t_{\alpha}$ is the Fenchel-Nielsen twist vector field associated to the twist along a geodesic $\alpha$, and $l_{*}$ is the hyperbolic geodesic length function. In this dissertation, we extend Wolpert's calculation of $t_{\alpha}l_{\beta}$ and $t_{\gamma}t_{\alpha}l_{\beta}$ in the hyperbolic setting to the case of convex real projective surfaces; in particular, our $t_{\alpha}$ is the twist-bulge vector field along geodesic $\alpha$ coming from the parametrization of the deformation space of convex $\mathbb{RP}^2$ structures on a surface due to Goldman, and our geodesic length function $l_{*}$ is in terms of a generalized cross-ratio in the sense of Labourie. To this end, we use results due to Labourie and Fock-Goncharov on the existence of an equivariant flag curve associated to Hitchin representations, of which convex real projective surfaces are an example. This flag curve allows us to extend the notions arising in the hyperbolic case to that of convex real projective structures and to complete our generalization of Wolpert's formulas.
    URI
    http://hdl.handle.net/1903/16644
    Collections
    • Mathematics Theses and Dissertations
    • UMD Theses and Dissertations

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility