Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    EMPIRICAL STUDIES BASED ON HONEYPOTS FOR CHARACTERIZING ATTACKERS BEHAVIOR

    Thumbnail
    View/Open
    Sobesto_umd_0117E_16141.pdf (9.095Mb)
    No. of downloads: 952

    Date
    2015
    Author
    Sobesto, Bertrand
    Advisor
    Cukier, Michel
    DRUM DOI
    https://doi.org/10.13016/M28K7N
    Metadata
    Show full item record
    Abstract
    The cybersecurity community has made substantial efforts to understand and mitigate security flaws in information systems. Oftentimes when a compromise is discovered, it is difficult to identify the actions performed by an attacker. In this study, we explore the compromise phase, i.e., when an attacker exploits the host he/she gained access to using a vulnerability exposed by an information system. More specifically, we look at the main actions performed during the compromise and the factors deterring the attackers from exploiting the compromised systems. Because of the lack of security datasets on compromised systems, we need to deploy systems to more adequately study attackers and the different techniques they employ to compromise computer. Security researchers employ target computers, called honeypots, that are not used by normal or authorized users. In this study we first describe the distributed honeypot network architecture deployed at the University of Maryland and the different honeypot-based experiments enabling the data collection required to conduct the studies on attackers' behavior. In a first experiment we explore the attackers' skill levels and the purpose of the malicious software installed on the honeypots. We determined the relative skill levels of the attackers and classified the different software installed. We then focused on the crimes committed by the attackers, i.e., the attacks launched from the honeypots by the attackers. We defined the different computer crimes observed (e.g., brute-force attacks and denial of service attacks) and their characteristics (whether they were coordinated and/or destructive). We looked at the impact of computer resources restrictions on the crimes and then, at the deterrent effect of warning and surveillance. Lastly, we used different metrics related to the attack sessions to investigate the impact of surveillance on the attackers based on their country of origin. During attacks, we found that attackers mainly installed IRC-based bot tools and sometimes shared their honeypot access. From the analysis on crimes, it appears that deterrence does not work; we showed attackers seem to favor certain computer resources. Lastly, we observed that the presence of surveillance had no significant impact on the attack sessions, however surveillance altered the behavior originating from a few countries.
    URI
    http://hdl.handle.net/1903/16563
    Collections
    • Mechanical Engineering Theses and Dissertations
    • UMD Theses and Dissertations

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility