Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Soot Oxidation in Hydrocarbon-free Flames

    Thumbnail
    View/Open
    Guo_umd_0117E_16013.pdf (3.626Mb)
    No. of downloads: 492

    Date
    2015
    Author
    Guo, Haiqing
    Advisor
    Sunderland, Peter B.
    DRUM DOI
    https://doi.org/10.13016/M23611
    Metadata
    Show full item record
    Abstract
    There are high uncertainties in the existing models of soot oxidation rates. To ameliorate this, soot oxidation in flames was examined using a novel ternary flame system, advanced diagnostics, and a detailed examination of past studies. The ternary flame system comprises a coflowing propylene/air diffusion flame to generate a steady soot column that flows into a hydrogen ring flame. The soot is thereby oxidized in a region far separated from soot formation, which is unlike any past study of soot oxidation in diffusion flames. Nonintrusive optical diagnostics were developed using a digital color camera to measure temperature and soot volume fraction. These diagnostics were validated using a steady laminar ethylene/air diffusion flame and were then applied to the ternary flame. Also measured in the soot flame were velocity, soot primary particle diameter, and stable species concentrations along an axial distance of 45 mm. Temperatures were between 1500 to 1750 K, and O2 partial pressures were between 10-2 to 10-1 bar. The soot flame was found to be lean, and its OH (with partial pressures between 10-4 to 10-3 bar) was expected to be equilibrated owing to the catalyzed radical recombination in the presence of soot. Soot flux and soot oxidation rates (0.5 to 6 g/m2-s) were determined. Soot burnout was 90% at 55 mm height. New soot oxidation mechanisms for O2 and OH were developed from a large body of published soot oxidation measurements. The resulting O2 mechanism has an activation energy of 195 kJ/mol, and the OH mechanism has a collision efficiency of 0.10. Predictions using the new mechanisms are within ±80% of the present measurements in the ternary flame system.
    URI
    http://hdl.handle.net/1903/16518
    Collections
    • Mechanical Engineering Theses and Dissertations
    • UMD Theses and Dissertations

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility