Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    INTERFACE ADVECTION AND JUMP CONDITION CAPTURING METHODS FOR MULTIPHASE INCOMPRESSIBLE FLOW

    Thumbnail
    View/Open
    Qin_umd_0117E_16010.pdf (4.651Mb)
    No. of downloads: 45

    Date
    2015
    Author
    Qin, Zhipeng
    Advisor
    Riaz, Amir
    DRUM DOI
    https://doi.org/10.13016/M2GG8V
    Metadata
    Show full item record
    Abstract
    In this work, new numerical methods are proposed to efficiently resolve interfaces occurring in multiphase incompressible flows. Multiphase flow problems consist of a large class of physical phenomenon from bubbles to bow waves in ships. Over the recent decades, numerical methods are becoming an important tool in addition to pure analytical and experimental methods. However, there is still large room for improvement in existing numerical methods. Contributions are made in the field of interface advection and the jump conditions for pressure. In the case of advection, a method is developed specifically for implicit interfaces that evolve with the Eulerian advection of a scalar field. The new method is validated by comparison with the interfaces that evolve with Lagrangian advection using a connected set of marker particles. To accurately capture the jump conditions, a second order accurate method is proposed for solving the variable coefficient Poisson's equation in the discretized Navier-Stokes formulation. This new method assumes both phases exist in the interface cell and that their collective effect can be expressed by a volume fraction weighted average value. The new capabilities have been integrated to build a dynamic Navier-Stokes equation solver. The new advection scheme scheme is also associated to track the interface. The new solver is tested by applications in several two phase flow problems.
    URI
    http://hdl.handle.net/1903/16515
    Collections
    • Mechanical Engineering Theses and Dissertations
    • UMD Theses and Dissertations

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility