Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    CONTEXTUALIZATION OF THE E. COLI LSR SYSTEM: RELATIVE ORTHOLOGY, RELATIVE QS ACTIVITY, AND EMERGENT BEHAVIOR

    Thumbnail
    View/Open
    Quan_umd_0117E_15957.pdf (6.612Mb)
    No. of downloads: 364

    supplementary video 1.mp4 (4.299Mb)
    No. of downloads: 16

    supplementary video 2.mp4 (2.631Mb)
    No. of downloads: 15

    supplementary video 3.mp4 (6.195Mb)
    No. of downloads: 21

    Date
    2015
    Author
    Quan, David Nathan
    Advisor
    Bentley, William E.
    DRUM DOI
    https://doi.org/10.13016/M2N90N
    Metadata
    Show full item record
    Abstract
    Within bacterial consortia there exist innumerable combinatorial circumstances, some of which may tip the scale toward pathogenicity, some of which may favor asymptomatic phenotypes. Indeed, the lines and intersections between commensal, pathogenic, and opportunistic bacteria are not always clean. As a foothold to mediate pathogenicity arising from consortia, many have puzzled at communication between bacteria. Primary among such considerations is quorum sensing (QS). Analogous to autocrine signaling in multicellular organisms, QS is a self-signaling process involving small molecules. Generally, QS activation is believed to have pleiotropic effects, and has been associated with numerous pathogenic phenotypes. The research herein focuses on autoinducer-2 (AI-2) based QS signaling transduced through the Lsr system. Produced by over 80 species of bacteria, AI-2 is believed to be an interspecies signaling molecule. Outside of the marine bacteria genera Vibrio and Marinomonas, the only known AI-2 based QS transduction pathway is the Lsr system. We sought to deepen the characterization of the Lsr system in contexts outside of the batch cultures in which it was originally defined. First, we interrogated E. coli K-12 W3110 Lsr system orthologs relative to the same strain's lac system. Both systems are induced by the molecule which they import and catabolize. We searched for homologs by focusing on the gene order along a genome, as gene arrangement can bear signaling consequences for autoregulatory circuits. We found that the Lsr system signal was phylogenetically dispersed if not particularly deep, especially outside of Enterobacteriales and Pasteurellaceaes, indicating that the system has generally been conferred horizontally. This contrasts with the lac system, whose signal is strong but limited to a select group of highly related enterobacteria. We then modeled the Lsr system with ODEs, revealing bimodality in silico, bolstering preliminary experimental evidence. This bifurcated expression was seen to depend upon nongenetic heterogeneity, which we modeled as a variation of a single compound parameter, basal, representing the basal rate of AI-2 flux into the cell through a low flux pathway. Moreover, in our finite difference-agent based models, bimodal expression could not arise from spatial stochasticity alone. This lies in contrast with the canonical LuxIR QS system, which employs an intercellular positive feedback loop to activate the entire population. We examined the consequences of this contrast, by modeling both systems under conditions of colony growth using finite difference-agent based methods. We additionally investigated the confluence of Lsr signaling with chemotactic sensitivity to AI-2, which has been demonstrated in E. coli. Finally, the consequences of bimodality in interspecies interactions were assessed by posing two populations containing different Lsr systems against each other. While few natural consortia consist of only two interacting bacteria, these studies indicate that AI-2 based Lsr signaling may mediate a multitude of transitional intraspecies and interspecies bacterial dynamics, the specifics of which will vary with the context and the homologs involved.
    URI
    http://hdl.handle.net/1903/16475
    Collections
    • Fischell Department of Bioengineering Theses and Dissertations
    • UMD Theses and Dissertations

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility