Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Ligand-Linked Disorder-to-Order Transitions in Allosteric Communication

    Thumbnail
    View/Open
    Eginton_umd_0117E_15953.pdf (2.981Mb)
    No. of downloads: 28

    Date
    2015
    Author
    Eginton, Christopher Ryan
    Advisor
    Beckett, Dorothy
    DRUM DOI
    https://doi.org/10.13016/M25909
    Metadata
    Show full item record
    Abstract
    Ligand-linked disorder-to-order transitions are integral to the function of numerous cellular proteins. Furthermore, these transitions can contribute to allosteric regulation, a principal mechanism controlling protein function. Despite their ubiquity, the relationship between the sequence and function of these regions and their mechanisms of achieving allosteric regulation are not well understood. The Escherichia coli biotin repressor, BirA, is a bifunctional protein that provides a model system to investigate these questions. Binding of the corepressor, biotinyl-5'-AMP, is coupled to a disorder-to-order transition resulting in a complex network of hydrophobic residues packing over the adenylate moiety. Additionally, this binding event is coupled to BirA dimerization, enhancing the self-association free energy by -4.0 kcal/mol. In this work, the sequence-function relationship of the disorder-to-order transition was investigated using several combinations of alanine substitutions in the hydrophobic network. Equilibrium binding and kinetic measurements show that the full functional response in the disorder-to-order transition is achieved through the appropriate packing of hydrophobic residues in the hydrophobic network. In addition to the disorder-to-order transition on the ligand binding surface, the dimerization interface contains several regions that, while disordered in the unliganded monomer, are folded in the liganded dimer. Through structural and thermodynamic analysis of the G142A variant, long-distance reciprocal communication between disorder-to-order transitions on the ligand binding and dimerization surfaces is identified as central to allostery. Together, these results demonstrate the functional versatility of disorder-to-order transitions and how the sequences of these regions dictate protein function and allosteric regulation.
    URI
    http://hdl.handle.net/1903/16471
    Collections
    • Chemistry & Biochemistry Theses and Dissertations
    • UMD Theses and Dissertations

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility