Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Modeling of Falling-Particle Solar Receivers for Hydrogen Production and Thermochemical Energy Storage

    Thumbnail
    View/Open
    Oles_umd_0117E_15896.pdf (4.038Mb)
    No. of downloads: 778

    Date
    2014
    Author
    Oles, Andrew
    Advisor
    Jackson, Gregory S.
    DRUM DOI
    https://doi.org/10.13016/M2W33W
    Metadata
    Show full item record
    Abstract
    One of the most important components in a solar-thermal power plant is the central receiver where concentrated solar energy is absorbed in a medium for storage and eventual use in power generation or fuel production. Current state-of-the-art receivers are not appropriate for future power-plant designs due to limited operating temperatures. The solid-particle receiver (SPR) has been proposed as an alternative architecture that can achieve very high temperatures (above 1500 °C) with high efficiency, while avoiding many of the thermal stress issues that plague alternative architectures. The SPR works by having a flow of solid particles free-fall through a cavity receiver while directly illuminated to absorb the solar energy. Because of the high operating temperatures that can be achieved, along with the ability to continuously flow a stream of solid reactant, the SPR has the potential for use as a reactor for either chemical storage of solar energy or fuel production as part of a solar water-splitting cycle. While the operation of the SPR is relatively simple, analysis is complicated by the many physical phenomena in the receiver, including radiation-dominated heat transfer, couple gas-particle flow, and inter-phase species transport via reaction. This work aims to demonstrate a set modeling tools for characterizing the operation of a solid particle receiver, as well as an analysis of the key operating parameters. A inert receiver model is developed using a semi-empirical gas-phase model and the surface-to-surface radiation model modified to account for interaction with the particle curtain. A detailed thermo-kinetic model is developed for undoped-ceria, a popular material for research into solar fuel production. The inert-receiver model is extended to integrate this kinetic model, and further used to evaluate the potential of perovskite materials to enhance the storage capability of the receiver. A modified undoped ceria model is derived and implemented via custom user functions in the context of a computational fluid dynamics simulation of the receiver using the discrete-ordinates method for radiation transfer. These modeling efforts provide a basis for in-depth analysis of the key operating parameters that influence the performance of the solid-particle receiver.
    URI
    http://hdl.handle.net/1903/16419
    Collections
    • Mechanical Engineering Theses and Dissertations
    • UMD Theses and Dissertations

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility