Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Silencing bacteria with small molecules

    Thumbnail
    View/Open
    Guo_umd_0117E_15885.pdf (5.138Mb)
    No. of downloads: 218

    Date
    2014
    Author
    Guo, Min
    Advisor
    Sintim, Herman O
    DRUM DOI
    https://doi.org/10.13016/M2NK72
    Metadata
    Show full item record
    Abstract
    Quorum sensing (QS) is a phenomenon in bacteria where the accumulation of extracellular signaling molecules (autoinducers, AIs), which enable bacterial cells to sense neighboring cells (population density), reaches certain threshold and triggers group behaviors of bacteria including virulence production and biofilm formation. The inhibition of QS and hence toxin production or biofilm formation by pathogenic bacteria has been suggested as an alternative strategy to deal with the problem of bacterial resistance to traditional antibiotics. Inhibiting QS will not kill bacteria, however the expectation is that resistance to a QS antagonist will not be as widespread as it is for traditional cytotoxic antibiotics. In Chapters 2 and 3 of this dissertation, we report the syntheses and biological evaluations of various analogs (C1 substituted, ester protected and 3,3-dihalogenated) of a universal QS signaling molecule, AI-2, which is found in both Gram-positive and Gram-negative bacteria. We report that modifications to the native AI-2 molecule affords analogs that can potently inhibit QS processes in E. coli and Salmonella. In Chapter 4, we explore the development of small molecule modulators of species-specific acylhomoserine lactone autoinducers, called AI-1. In the past three decades, intensive efforts have been dedicated to the development of modulators of AI-1-based QS signaling. The majority of modulators, reported to date, have kept the lactone head group and modified the acyl tail. These synthetic modulators, although effective, are not drug-like because lactones are susceptible to chemical and enzymatic hydrolysis. We demonstrate that 3-aminooxazolidinone based AI-1 analogs, which are hydrolytically more stable than homoserine lactone-based compounds, can also modulate AI-1-based QS.
    URI
    http://hdl.handle.net/1903/16413
    Collections
    • Chemistry & Biochemistry Theses and Dissertations
    • UMD Theses and Dissertations

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility