Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    OCEAN VARIABILITY IN CMIP5 (COUPLED MODEL INTERCOMPARISON PROJECT PHASE 5) HISTORICAL SIMULATIONS

    Thumbnail
    View/Open
    Ding_umd_0117E_15808.pdf (22.83Mb)
    No. of downloads: 58

    Date
    2014
    Author
    Ding, Yanni
    Advisor
    Carton, James A.
    DRUM DOI
    https://doi.org/10.13016/M22G84
    Metadata
    Show full item record
    Abstract
    The oceans play a key role in the global climate variability. This dissertation examines climate variability in historical simulations from fourteen CMIP5 (Coupled Model Intercomparison Project Phase 5) coupled models on different time scales. Responses of oceans to the external volcanic eruption, green house gas forcing, and internally generated variability are investigated with emphasis on higher latitudes. Chapter 2 addresses the oceanic response to tropical volcanic eruptions. Previous modeling studies have provided conflicting high latitude climate responses to volcanic eruptions, including the ocean's role. This controversy happens mainly because the response varies widely from model to model, and even varies among ensemble members of a single model. The increase in Atlantic Meridional Overturning Circulation (AMOC) after the volcanic eruption is closely linked with its internal variability. Chapter 3 addresses the seasonal and centennial trends in the Arctic Ocean. The Arctic warming is apparent in all models, although there is considerable variability especially its seasonal cycle. Both the surface heat flux and the oceanic heat convergence contribute to the Arctic warming on centennial time scale. Meanwhile, the seasonal variation of oceanic warming is largely determined by the atmospheric heating. In models presenting a clear seasonal cycle of surface net flux increases, there is a notable retreat of sea ice extent in winter, which allows more heat loss from the ocean through turbulent fluxes. Chapter 4 discusses the internally generated variability of high latitude water masses. Both the magnitude and the time scale of subarctic decadal variability are strikingly similar to observations. The analysis of the more realistic models provides constraints on relative roles of the oceanic heat transport and the atmospheric heat flux. One possible factor that could give rise to the different origins of ocean variability is the blocking of mid-latitude jet stream. The oceanic heat transport is more important to the decadal variability of the high latitude ocean in models where winter-time atmospheric blocking events over the Euro-Atlantic sector are more frequent.
    URI
    http://hdl.handle.net/1903/16284
    Collections
    • Atmospheric & Oceanic Science Theses and Dissertations
    • UMD Theses and Dissertations

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility