Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Structural Changes and the Nature of Superconductivity in Rare-earth Doped CaFe2As2

    Thumbnail
    View/Open
    Drye_umd_0117E_15734.pdf (5.519Mb)
    No. of downloads: 558

    Date
    2014
    Author
    Drye, Tyler Brunson
    Advisor
    Paglione, Johnpierre
    DRUM DOI
    https://doi.org/10.13016/M2T31H
    Metadata
    Show full item record
    Abstract
    Chemical substitution into iron-pnictide parent compounds (e.g. AFe<sub>2<\sub>As<sub>2<\sub> where A=Ba, Sr, or Ca) has proven to be an effective means to induce bulk high-temperature superconductivity in these systems. By doping CaFe<sub>2<\sub>As<sub>2<\sub> with rare-earth lanthanides (La, Ce, Pr, and Nd), we have observed a 47 K superconducting phase coexisting with a lattice distorting &ldquo;collapse&rdquo; transition. Both of these effects have important ramifications: the collapse transition occurs when interlayer As atoms form a bond, shrinking the <italic>c-axis<\italic> lattice constant and simultaneously quenching the iron magnetic moment. This transition is further explored in context of a similar system, Sr-doped BaNi<sub>2<\sub>As<sub>2<\sub>. The superconducting phase, given the right combination of conditions, appears with a critical temperature as high as 49 K, but always in a very small volume of the sample (as determined by shielding effects). This has led to interesting theories about the nature of this superconductivity. A recently posited idea of &ldquo;interfacial superconductivity&rdquo; has been ruled out by our tests. Additionally, increasing the concentration of rare-earth atoms does not increase the superconducting volume fraction, but, in fact lowers the transition temperature, excluding the hypothesis that rare-earth defects are responsible for the minority superconducting phase. New pressure measurements have shown that the superconducting phase is stabilized when antiferromagnetic order is fully suppressed.
    URI
    http://hdl.handle.net/1903/16255
    Collections
    • Chemistry & Biochemistry Theses and Dissertations
    • Physics Theses and Dissertations
    • UMD Theses and Dissertations

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility