Using Inverse Fire Modeling With Multiple Input Signals to Obtain Heat Release Rates in Compartment Fire Scenarios

Loading...
Thumbnail Image

Files

Publication or External Link

Date

Advisor

Marshall, Andre

Citation

Abstract

A set of multi-room compartment fire experiments were conducted to obtain measurements of hot gas layer temperature and depth. These measurements were used as an input to an inverse fire model that coupled a genetic algorithm with a zone fire model to calculate a unique solution to the original fire size and door opening used in the experiments. The objective of this research was to calculate simultaneously the real-time fire size and fire door opening of the experiment using a combination of hot gas layer temperature and hot gas layer height measurements from a multi-room compartment in concert with an inverse fire model. This research focused on increasing the robustness of an inverse fire model (IFM) with respect to physical accuracy and multi-variable calculations. The IFM successfully identified a unique solution and calculated fire size within 10-40% of experimental values.

Notes

Rights