Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    CFD MODELING AND ANALYSIS OF ROTOR WAKE IN HOVER INTERACTING WITH A GROUND PLANE

    Thumbnail
    View/Open
    Kalra_umd_0117E_15695.pdf (18.22Mb)
    No. of downloads: 1020

    Date
    2014
    Author
    Kalra, Tarandeep Singh
    Advisor
    Baeder, James d
    DRUM DOI
    https://doi.org/10.13016/M2N89Q
    Metadata
    Show full item record
    Abstract
    The action of the rotor wake on loose sediment on the ground is primarily responsible for inducing the rotorcraft brownout phenomenon. Therefore, any simulation of brownout must be capable of accurately predicting the velocity field induced by the rotor when it is operating in ground effect. This work attempts to use a compressible, structured, overset Reynolds-Averaged Navier-Stokes (RANS) based solver to simulate hovering rotors in ground effect (IGE) to demonstrate the capability of the code to provide accurate tip vortex flow field predictions, and provide a good understanding of the ground-wake interactions. The computations are performed for a micro-scale rotor (0.086m radius, aspect ratio of 4.387 operating at a tip Mach number of 0.08 and Reynolds number of 32,500) and a sub-scale rotor (0.408m radius, aspect ratio of 9.132 operating at a tip Mach number of 0.24 and Reynolds number of 250,000) in order to compare to experimental measurements. The micro-scale rotor has a rectangular tip shape and is simulated three rotor heights: 1.5R, 1.0R and 0.5R above ground (R = Rotor radius). The sub-scale rotor is simulated at one particular rotor height (i.e. 1R) but with four different tip shapes: rectangular, swept, BERP-like and slotted tip. Various mesh placement strategies are devised to efficiently capture the path of the tip vortices for both regimes. The micro-scale rotor simulations are performed using the Spalart Allmaras (S-A) turbulence model. The examination of the IGE tip vortex flow field suggests high degree of instabilities close to the ground. In addition, the induced velocities arising from the proximity of the rotor tip vortices causes flow separation at the ground. The sub-scale rotor simulations show a smeared out flow field even at early wake ages due to excessive turbulence levels. The distance function in the S-A turbulence model is modified using the Delayed Detached Eddy Simulation (DDES) approach and a correction to length scaling is included for anistropic grids. The resulting computational flow field after these modifications compares well with the experiments. The slotted tip is seen to diffuse the tip vortices at early wake ages through injection of momentum and increased turbulence, and generates the least amount of unsteady pressure variation at the ground plane when compared with other three tip shapes.
    URI
    http://hdl.handle.net/1903/16086
    Collections
    • Aerospace Engineering Theses and Dissertations
    • UMD Theses and Dissertations

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility