Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    EVOLUTION OF FACETED CRYSTAL SURFACES: MODELING AND ANALYSIS

    Thumbnail
    View/Open
    Nakamura_umd_0117E_15656.pdf (1.311Mb)
    No. of downloads: 180

    Date
    2014
    Author
    Nakamura, Kanna
    Advisor
    Margetis, Dionisios
    Mellet, Antoine
    DRUM DOI
    https://doi.org/10.13016/M2690M
    Metadata
    Show full item record
    Abstract
    Nanoscale materials hold the promise of leading to breakthroughs in the development of electronics. These materials are of great interest especially at low temperatures due to their thermal stability. In order to predict the evolution of crystal surfaces at such precision, physical effects across a wide range of scales, from atomistic processes to large-scale thermodynamics, must be consolidated. This thesis aims to incorporate the microscale information carried by the atomic dynamics to the evolution of an apparently smooth surface at macroscopic scale. At the nanometer scale, the motion of atomic defects in the surface is described by ordinary differential equations (ODEs). At larger scale, the atomic roughness is no longer detectable and the surface evolution can be described by a smooth function for the surface height on some reference plane. This height function satisfies certain partial differential equations (PDEs) on the basis of the thermodynamic principles. These ODEs and PDEs separately yield predictions of distinct characteristics for the morphological evolution of a surface. While modeling at small scale has the advantage of simple physical principles, observation at the larger scale offers more tangible intuition for the topographic evolution and it is often more suitable for relating to experiments. A principal theme of this thesis is to understand the difference or error between these two predictions. The error can be conveniently assessed numerically but this is not sufficient to achieve a deeper understanding of the problem. To this end, this thesis addresses both quantitative notion of the error through numerics and systematic and conceptual notion of the error. In order to give a concrete notion to this difference, it is crucial to carefully interpret what is meant by a solution of the evolusion PDEs; the subtlety pertains to the choice of method used to solve the PDE. Recently, it has been shown that the solutions of PDEs obtained solely from the thermodynamic principles are prone to deviate from the underlining microscopic dynamics. This thesis investigates the cause of this discrepancy and propose a reconciliation by exploring a new continuum model that may plausibly incorporate microscopic influences.
    URI
    http://hdl.handle.net/1903/16074
    Collections
    • Mathematics Theses and Dissertations
    • UMD Theses and Dissertations

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility