Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • A. James Clark School of Engineering
    • Institute for Systems Research Technical Reports
    • View Item
    •   DRUM
    • A. James Clark School of Engineering
    • Institute for Systems Research Technical Reports
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Nonlinear Programming Methods for Distributed Optimization

    Thumbnail
    View/Open
    distr_optimization_1c.pdf (379.2Kb)
    No. of downloads: 546

    Date
    2015-01
    Author
    Matei, Ion
    Baras, John
    DRUM DOI
    https://doi.org/10.13016/M2NG71
    Metadata
    Show full item record
    Abstract
    In this paper we investigate how standard nonlinear programming algorithms can be used to solve constrained optimization problems in a distributed manner. The optimization setup consists of a set of agents interacting through a communication graph that have as common goal the minimization of a function expressed as a sum of (possibly non-convex) differentiable functions. Each function in the sum corresponds to an agent and each agent has associated an equality constraint. By re-casting the distributed optimization problem into an equivalent, augmented centralized problem, we show that distributed algorithms result naturally from applying standard nonlinear programming tech- niques. Due to the distributed formulation, the standard assumptions and convergence results no longer hold. We emphasize what changes are necessary for convergence to still be achieved for three algorithms: two algorithms based on Lagrangian methods, and an algorithm based the method of multipliers. The changes in the convergence results are necessary mainly due to the fact that the (local) minimizers of the lifted optimization problem are not regular, as a results of the distributed formulation. Unlike the standard algorithm based on the method of multipliers, for the distributed version we cannot show that the theoretical super-linear convergence rate can be achieved.
    URI
    http://hdl.handle.net/1903/16055
    Collections
    • Institute for Systems Research Technical Reports

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility