Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Crowdsourcing decision support: frugal human computation for efficient decision input acquisition

    Thumbnail
    View/Open
    Quinn_umd_0117E_15575.pdf (6.194Mb)
    No. of downloads: 402

    Date
    2014
    Author
    Quinn, Alexander James
    Advisor
    Bederson, Benjamin B
    DRUM DOI
    https://doi.org/10.13016/M28C8Z
    Metadata
    Show full item record
    Abstract
    When faced with data-intensive decision problems, individuals, businesses, and governmental decision-makers must balance trade-offs between optimality and the high cost of conducting a thorough decision process. The unprecedented availability of information online has created opportunities to make well-informed, near-optimal decisions more efficiently. A key challenge that remains is the difficulty of efficiently gathering the requisite details in a form suitable for making the decision. Human computation and social media have opened new avenues for gathering relevant information or opinions in support of a decision-making process. It is now possible to coordinate paid web workers from online labor markets such as Amazon Mechanical Turk and others in a distributed search party for the needed information. However, the strategies that individuals employ when confronted with too much information--satisficing, information foraging, etc.--are more difficult to apply with a large, distributed group. Consequently, current distributed approaches are inherently wasteful of human time and effort. This dissertation offers a method for coordinating workers to efficiently enter the inputs for spreadsheet decision models. As a basis for developing and understanding the idea, I developed AskSheet, a system that uses decision models represented as spreadsheets. The user provides a spreadsheet model of a decision, the formulas of which are analyzed to calculate the value of information for each of the decision inputs. With that, it is able to prioritize the inputs and make the decision input acquisition process more frugal. In doing so, it trades machine capacity for analyzing the model for a reduction in the cost and burden to the humans providing the needed information.
    URI
    http://hdl.handle.net/1903/15816
    Collections
    • Computer Science Theses and Dissertations
    • UMD Theses and Dissertations

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility