Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Fast Numerical and Machine Learning Algorithms for Spatial Audio Reproduction

    Thumbnail
    View/Open
    Luo_umd_0117E_15521.pdf (8.577Mb)
    No. of downloads: 1040

    Date
    2014
    Author
    Luo, Yuancheng
    Advisor
    Duraiswami, Ramani
    DRUM DOI
    https://doi.org/10.13016/M2D885
    Metadata
    Show full item record
    Abstract
    Audio reproduction technologies have underwent several revolutions from a purely mechanical, to electromagnetic, and into a digital process. These changes have resulted in steady improvements in the objective qualities of sound capture/playback on increasingly portable devices. However, most mobile playback devices remove important spatial-directional components of externalized sound which are natural to the subjective experience of human hearing. Fortunately, the missing spatial-directional parts can be integrated back into audio through a combination of computational methods and physical knowledge of how sound scatters off of the listener's anthropometry in the sound-field. The former employs signal processing techniques for rendering the sound-field. The latter employs approximations of the sound-field through the measurement of so-called Head-Related Impulse Responses/Transfer Functions (HRIRs/HRTFs). This dissertation develops several numerical and machine learning algorithms for accelerating and personalizing spatial audio reproduction in light of available mobile computing power. First, spatial audio synthesis between a sound-source and sound-field requires fast convolution algorithms between the audio-stream and the HRIRs. We introduce a novel sparse decomposition algorithm for HRIRs based on non-negative matrix factorization that allows for faster time-domain convolution than frequency-domain fast-Fourier-transform variants. Second, the full sound-field over the spherical coordinate domain must be efficiently approximated from a finite collection of HRTFs. We develop a joint spatial-frequency covariance model for Gaussian process regression (GPR) and sparse-GPR methods that supports the fast interpolation and data fusion of HRTFs across multiple data-sets. Third, the direct measurement of HRTFs requires specialized equipment that is unsuited for widespread acquisition. We ``bootstrap'' the human ability to localize sound in listening tests with Gaussian process active-learning techniques over graphical user interfaces that allows the listener to infer his/her own HRTFs. Experiments are conducted on publicly available HRTF datasets and human listeners.
    URI
    http://hdl.handle.net/1903/15784
    Collections
    • Computer Science Theses and Dissertations
    • UMD Theses and Dissertations

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility