Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Ultrafast Control of Spin and Motion in Trapped Ions

    Thumbnail
    View/Open
    Mizrahi_umd_0117E_14647.pdf (22.51Mb)
    No. of downloads: 516

    Date
    2013
    Author
    Mizrahi, Jonathan Albert
    Advisor
    Monroe, Christopher R
    DRUM DOI
    https://doi.org/10.13016/M2959K
    Metadata
    Show full item record
    Abstract
    Trapped atomic ions are a promising medium for quantum computing, due to their long coherence times and potential for scalability. Current methods of entangling ions rely on addressing individual modes of motion within the trap and applying qubit state dependent forces with external fields. This approach can limit the speed of entangling gates and make them vulnerable to decoherence due to coupling to unwanted modes or ion heating. This thesis is directed towards demonstrating novel entanglement schemes which are not limited by the trap frequency, and can be made almost arbitrarily fast. Towards this goal, I report here on the first experiments using ultrafast laser pulses to control the internal and external states of a single trapped ion. I begin with experiments in ultrafast spin control, showing how a single laser pulse can be used to completely control both spin degrees of freedom of the ion qubit in tens of picoseconds. I also show how a train of weak pulses can be used to drive Raman transitions based on a frequency comb. I then discuss experiments using pulses to rapidly entangle the spin with the motion, and how careful spectral redistribution allows a single pulse to execute a spin-dependent momentum kick. Finally, I explain how these spin-dependent momentum kicks can be used in the future to create an ultrafast entangling gate. I go over how such a gate would work, and present experimentally realizable timing sequences which would create a maximally entangled state of two ions in a time faster than the period of motion in the trap.
    URI
    http://hdl.handle.net/1903/15661
    Collections
    • Physics Theses and Dissertations
    • UMD Theses and Dissertations

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility