Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Pericellular matrix mechanotransduction events in differentiating human mesenchymal stem cells: Modulating the pericellular matrix through silencing type VI collagen and decorin

    Thumbnail
    View/Open
    Twomey_umd_0117E_15177.pdf (3.762Mb)
    No. of downloads: 353

    Date
    2014
    Author
    Twomey, Julianne Doreen
    Advisor
    Hsieh, Adam H
    Metadata
    Show full item record
    Abstract
    Stem cell therapies are currently being explored for their potential in the regeneration of load bearing tissues, such as cartilage. Current therapies lack the ability to intrinsically overcome a mechanically adverse environment at implantation. To advance the implementation of human mesenchymal stem cells (hMSCs) for cartilage repair, the mechanisms by which cells &ldquo;feel&ldquo; and interact with their micromechanical environment need to be understood. Chondrogenic hMSCs develop a thin pericellular matrix (PCM), consisting of type VI collagen (ColVI) and proteoglycans such as decorin (DCN). The PCM is believed to control mechanotransduction events, acting as both a biomechanical and biochemical buffer. This thesis studies the functional role of ColVI and DCN through targeted gene knockdown using shRNA lentiviral vectors complimentary to <italic>col6a1</italic> or <italic>dcn</italic>. In the first part of the work, the biophysical role of the PCM was determined through comparisons of cellular deformability under uniaxial strain with or without ColVI and DCN knockdown. HMSCs were cultured in alginate scaffolds and were stimulated with transforming growth factor &beta; for 1 to 2 weeks. We found that the PCM with ColVI knockdown lacked the ability to withstand applied compression and with DCN knockdown deformed in a strain&ndash; dependent manner. Next we analyzed the mechanosignaling initiation caused by a transient sinusoidal compressive load through studying cytoskeletal kinetics and gene expression. Altering the PCM through ColVI and DCN knockdown caused an increase in actin and vimentin cytoskeletal protein concentration that lacked a dynamic response to load. This lead to a stronger fibroblast growth factor gene expression in ColVI knockdown. DCN also demonstrated direct control over cartilage oligomeric matrix protein gene expression, through a loss of TGF&ndash; &beta; regulation. These results were further demonstrated during long term compressive culture. Unconfined sinusoidal compressive culture revealed the highest improvement in material properties in knockdown samples at day 14. Through these studies, we demonstrated that ColVI and DCN are integral proteins in maintaining the structural microenvironment through protecting the cell from injurious deformation, maintaining cytoskeletal dynamics in response to load, and regulating the differentiation rate through TGF&ndash; &beta; signaling. Finally, we demonstrated the ability to manipulate chondrogenic mechanotransduction events using genetic engineering.
    URI
    http://hdl.handle.net/1903/15357
    Collections
    • Fischell Department of Bioengineering Theses and Dissertations
    • UMD Theses and Dissertations

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility