Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Exploiting Data-Dependent Structure for Improving Sensor Acquisition and Integration

    Thumbnail
    View/Open
    Cloninger_umd_0117E_15084.pdf (3.293Mb)
    No. of downloads: 539

    Date
    2014
    Author
    Cloninger, Alexander
    Advisor
    Czaja, Wojciech
    Benedetto, John J
    Metadata
    Show full item record
    Abstract
    This thesis deals with two approaches to building efficient representations of data. The first is a study of compressive sensing and improved data acquisition. We outline the development of the theory, and proceed into its uses in matrix completion problems via convex optimization. The aim of this research is to prove that a general class of measurement operators, bounded norm Parseval frames, satisfy the necessary conditions for random subsampling and reconstruction. We then demonstrate an example of this theory in solving 2-dimensional Fredholm integrals with partial measurements. This has large ramifications in improved acquisition of nuclear magnetic resonance spectra, for which we give several examples. The second part of this thesis studies the Laplacian Eigenmaps (LE) algorithm and its uses in data fusion. In particular, we build a natural approximate inversion algorithm for LE embeddings using L1 regularization and MDS embedding techniques. We show how this inversion, combined with feature space rotation, leads to a novel form of data reconstruction and inpainting using a priori information. We demonstrate this method on hyperspectral imagery and LIDAR. We also aim to understand and characterize the embeddings the LE algorithm gives. To this end, we characterize the order in which eigenvectors of a disjoint graph emerge and the support of those eigenvectors. We then extend this characterization to weakly connected graphs with clusters of differing sizes, utilizing the theory of invariant subspace perturbations and proving some novel results.
    URI
    http://hdl.handle.net/1903/15281
    Collections
    • Computer Science Theses and Dissertations
    • Mathematics Theses and Dissertations
    • UMD Theses and Dissertations

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility