Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Towards a Unified Theory of Timed Automata

    Thumbnail
    View/Open
    Fontana_umd_0117E_15027.pdf (3.071Mb)
    No. of downloads: 643

    Date
    2014
    Author
    Fontana, Peter Christopher
    Advisor
    Cleaveland, Rance
    Metadata
    Show full item record
    Abstract
    Timed automata are finite-state machines augmented with special clock variables that reflect the advancement of time. Able to both capture real-time behavior and be verified algorithmically (model-checked), timed automata are used to model real-time systems. These observations have led to the development of several timed-automata verification tools that have been successfully applied to the analysis of a number of different systems; however, the practical utility of timed automata is undermined by the theories underlying different tools differing in subtle but important ways. Since algorithmic results that hold for the variant used by one tool may not apply to another variant, this complicates the application of different tools to different models. The thesis of this dissertation is this: the theory of timed automata can be unified, and a practical unified approach to timed-automata model checking can be built around the paradigm of proof search. First, this dissertation establishes the mutual expressivity of timed automata variants, thereby providing precise characterizations of when theoretical results of one variant apply to other variants. Second, it proves powerful expressive properties about different logics for timed behavior, and as a result, enlarges the set of verifiable properties. Third, it discusses an implementation of a verification tool for an expressive fixpoint-based logic, demonstrating an application of this newly developed theory. The tool is based on a proof-search paradigm; verifying timed automata involves constructing proofs using proof rules that enable verification problems to be translated into subproblems that must be solved. The tool's performance is optimized by using derived proof rules, thereby providing a theoretically sound basis for faster model checking. Last, this dissertation utilizes the proofs generated during verification to gain additional information about the vacuous satisfaction of certain formulae: whether the automaton satisfied a formula by never satisfying certain premises of that specification. This extra information is often obtained without significantly decreasing the verifier's performance.
    URI
    http://hdl.handle.net/1903/15232
    Collections
    • Computer Science Theses and Dissertations
    • UMD Theses and Dissertations

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility