Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Mathematical Topics in Fluid-Particle Interaction

    Thumbnail
    View/Open
    Ballew_umd_0117E_14990.pdf (513.0Kb)
    No. of downloads: 626

    Date
    2014
    Author
    Ballew, Joshua Thomas
    Advisor
    Trivisa, Konstantina
    Metadata
    Show full item record
    Abstract
    Models for particles interacting with compressible fluids are useful to several areas of science. This dissertation considers some of the mathematical issues of the Navier-Stokes-Smoluchowski and Euler-Smoluchowski models for compressible fluids. First, well-posedness for the NSS system is investigated. Among the results are the existence of weakly dissipative solutions obeying a relative entropy inequality. An approximating scheme using an artificial pressure and vanishing viscosity is employed to this end. The existence of these weakly dissipative solutions is used to show a weak-strong uniqueness result, using a Gronwall's argument on the relative entropy inequality. The existence of smooth solutions for finite time to the NSS system under certain compatibility conditions is shown using an iterative approximation. Next, two scaled regimes for the NSS system are considered. It is shown that for these low Mach number regimes, the solutions of the compressible system can be approximated by solutions of simpler models. In particular, the solutions to the model in a low stratification regime can be approximated by solutions to a model for incompressible flows with a Boussinesq relation. Solutions to the model in a strong stratification regime can be approximated by solutions to a model for anelastic flows. Much of the analysis for these limits relies on a Helmholtz free energy inequality, which bounds many of the quantities needed for the analysis. Lastly, the Euler-Smoluchowski model for inviscid, compressible fluids is considered. Finite-time existence of smooth solutions is shown using an iterative approximation and the results of Friedrichs and Majda for existence of smooth solutions for symmetric hyperbolic systems.
    URI
    http://hdl.handle.net/1903/15204
    Collections
    • Computer Science Theses and Dissertations
    • Mathematics Theses and Dissertations
    • UMD Theses and Dissertations

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility