Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Thermal and Manufacturing Design of Polymer Composite Heat Exchangers

    Thumbnail
    View/Open
    Cevallos_umd_0117E_14947.pdf (4.558Mb)
    No. of downloads: 3070

    Date
    2014
    Author
    Cevallos, Juan Gabriel
    Advisor
    Bar-Cohen, Avram
    Metadata
    Show full item record
    Abstract
    Polymer heat exchangers, using thermally-enhanced composites, constitute a "disruptive" thermal technology that can lead to significant freshwater and energy savings. The widespread use of seawater as a coolant can be made possible by the favorable qualities of thermally-enhanced polymer composites: good corrosion resistance, higher thermal conductivities, higher strengths, low embodied energy and good manufacturability. Polymer composites can bridge the gap between unfilled polymers and corrosion-resistant metals, and can be applied to a variety of heat exchanger applications. However, thermally enhanced polymer composites behave differently from more conventional polymers during the molding process. The desired thin walled large structures are expected to pose challenges during the molding process. This dissertation presents a design methodology that integrates thermo-fluid considerations and manufacturing issues into a single design tool for thermally enhanced polymer heat exchangers. The methodology shows that the choice of optimum designs is restricted by moldability considerations. Additionally, additive manufacturing has the potential to be a transformative manufacturing process, in which complex geometries are built layer-by-layer, which could allow for production and assembly of heat exchangers in a single step. In this dissertation, an air-to-water polymer heat exchanger was made by fused deposition modeling and tested for the first time. This dissertation also introduces a novel heat exchanger geometry that can favorably exploit the intrinsic thermal anisotropy of filled polymers. A laboratory-scale air-to-water polymer composite heat exchanger was made by injection molding. Its performance was verified empirically, and modeled with numerical and analytical tools.
    URI
    http://hdl.handle.net/1903/15172
    Collections
    • Mechanical Engineering Theses and Dissertations
    • UMD Theses and Dissertations

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility