Show simple item record

THE ROLE OF THE ACTIN CROSSLINKER PALLADIN: FROM RECONSTITUTED NETWORKS TO LIVE CELLS

dc.contributor.advisorUpadhyaya, Arpitaen_US
dc.contributor.authorGrooman, Brianen_US
dc.date.accessioned2014-06-24T05:40:33Z
dc.date.available2014-06-24T05:40:33Z
dc.date.issued2013en_US
dc.identifier.urihttp://hdl.handle.net/1903/15163
dc.description.abstractBiophysics is a rapidly growing area of research. New discoveries continue to show the importance of mechanical phenomenon in biological processes, even at the cellular and sub-cellular levels. The complexity of living cells, coupled with their small size makes their study particularly difficult. Palladin is an actin-crosslinker that has not yet been studied as much as other actin-crosslinkers. It localizes with alpha-actinin in stress fibers in many adult cell types. Palladin's exact purpose is still unknown. Through in-vitro studies of reconstituted actin networks we gain insight into the mechanical importance of this novel protein, and show that when partnered with α-actinin, palladin efficiently enhances the network stiffness. Pancreatic Stellate Cells are responsible for maintaining organ integrity, and their malignant counterparts are responsible for one of the most deadly forms of cancer. Interestingly, palladin is shown to be up-regulated in tumors derived from these cells. By studying the stiffness of the cells with and without palladin (via genetic manipulation) we investigate the mechanical importance of palladin in vivo. GFP labelled palladin can serve as a useful marker because it naturally localizes into a regular pattern along stress fibers. Combined with image processing, this makes tracking local strain rates within the cell possible. Pancreatic stellate cells will respond to an applied force by actively contracting their stress fibers. The dynamics of these responses are quantified by tracking the spots of palladin. Through various pharmacological manipulations we study possible signaling pathways that lead from an applied force to stress fiber contraction. Overall, this work explores the mechanical importance of palladin and also investigates the mechanical properties of tumor-associated pancreatic stellate cells, neither of which have been previously studied. Our work shows that palladin controls network stiffness in-vitro, but not in-vivo, suggesting a yet undiscovered purpose. We have also shown that pancreatic stellate cells are in the same range of stiffness as other fibroblasts, and can actively respond to external forces. All of these findings contribute to an increased understanding of the complex systems which govern the mechanical properties of living material.en_US
dc.language.isoenen_US
dc.titleTHE ROLE OF THE ACTIN CROSSLINKER PALLADIN: FROM RECONSTITUTED NETWORKS TO LIVE CELLSen_US
dc.typeDissertationen_US
dc.contributor.publisherDigital Repository at the University of Marylanden_US
dc.contributor.publisherUniversity of Maryland (College Park, Md.)en_US
dc.contributor.departmentPhysicsen_US
dc.subject.pqcontrolledBiophysicsen_US
dc.subject.pquncontrolledActinen_US
dc.subject.pquncontrolledCellen_US
dc.subject.pquncontrolledCytoskeletonen_US
dc.subject.pquncontrolledPalladinen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record